I am new in Kafka, so i have some issues related on basic things for Kafka. I wanted to distribute all messages equally to all over partitions.
As I know, Producer chose the partition based on key hashing (If key is available) using default Partitioner hash algorithm (Random, Consistent, Murmur2, sticky etc.). Which is great. But I want to distribute the messages to all partitions. Like:
Topic: "Test"
Partition: 3
Now, If i produce messages (Key Available) then I want to distribute those messages equally like:
Partition 1: 1,4,7,10
Partition 2: 2,5,8
Partition 3: 3,6,9
So, how can i distribute messages equally to all partition
The default partitioner chooses partition based on the hash of key if a key is available and no partition is specified in the record itself. Otherwise (i.e. no key is present and no partition is specified) it chooses the partition in a round-robin fashion (Kafka<2.4, read below).
public int partition(String key, int partitionNum) {
byte[] keyBytes = key.getBytes();
return toPositive(murmur2(keyBytes)) % partitionNum;
}
For a handful number of keys, using the default partitioner may not give you even data distribution, as toPositive(murmur2(keyBytes)) % numberOfPartitions will have collisions. The best way is for the producer to take responsibility and decide which partition to send the message to using CustomPartitioner based on your business use-case.
Kafka guarantees that any consumer of a given topic-partition will always read that partition's events in exactly the same order as they were written.
https://kafka.apache.org/documentation.html#introduction
One thing to note here is, that although eliminating data skewness is important - The order of messages going in different partitions in a topic may or may not be in-order - this may have consequences based on your use-case. But within a Partition will they'll be stored in the order, Thus keep related messages in the same partition.
For e.g. In an E-commerce delivery-related environment, Messages related to an OrderID should come in order (you don't want "Out-For-Delivery" to be after "Delivered"), thus messages for specific order_id should go into the same partition.
Update:
As mentioned in the comment, Kafka ≥ v2.4 uses Sticky Partitioner as the default partitioner.
The sticky partitioner addresses the problem of spreading out records without keys into smaller batches by picking a single partition to send all non-keyed records. Once the batch at that partition is filled or otherwise completed, the sticky partitioner randomly chooses and “sticks” to a new partition. That way, over a larger period of time, records are about evenly distributed among all the partitions while getting the added benefit of larger batch sizes.
https://www.confluent.io/blog/apache-kafka-producer-improvements-sticky-partitioner/
This means Kafka producers don’t immediately send records but keeps a batch of records for a specific topic with no keys and no assigned partition and will send to the same partition until the batch is ready to be sent. When a new batch is created, a new partition is chosen.
Effectively, the partitioner assigns records to the same partition until the batch is sent based on batch.size and linger.ms, once that batch is sent, a new partition will be used. Thus messages may not necessarily be evenly distributed.
Further Reading:
https://cwiki.apache.org/confluence/display/KAFKA/KIP-480%3A+Sticky+Partitioner
https://cwiki.apache.org/confluence/display/KAFKA/KIP-794%3A+Strictly+Uniform+Sticky+Partitioner#KIP794:StrictlyUniformStickyPartitioner-UniformStickyBatchSize
https://www.confluent.io/blog/5-things-every-kafka-developer-should-know/#tip-2-new-sticky-partitioner
https://aiven.io/blog/balance-data-across-kafka-partitions#challenge-of-uneven-record-distribution
I think this answers your question best:
https://rajatjain-ix.medium.com/whats-wrong-with-kafka-b53d0549677a
So, there are two solutions available..
You don't specify any partition_key. In this case, the DefaultPartitioner will automatically round-robin the messages across the partitions.
You use a (incremental uuid) % (count of partitions) as the partition number in Producer API. This way you are manually telling it to round-robin the messages to partitions.
Ronak explained very precisely.
You could achieve distribution of the messages over partitions evenly by implementing Partitioner interface regardless of the key.
New sticky version
public class SimplePartitioner implements Partitioner {
private final StickyPartitionCache stickyPartitionCache = new StickyPartitionCache();
public void configure(Map<String, ?> configs) {
}
#Override
public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
return partition(topic, key, keyBytes, value, valueBytes, cluster, cluster.partitionsForTopic(topic).size());
}
public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster,
int numPartitions) {
return stickyPartitionCache.partition(topic, cluster);
}
#Override
public void close() {
}
}
Old version - see this link: hhttps://github.com/sharefeel/kafka-simple-partitioner/blob/0.8.2/SimplePartitioner.java
Don't forget this. Target partitions of SimplePartitioner and DefaultPartitioner are not same. But normally same.
If key is given, DefaultPartitioner will return one number from 0 to numPartition-1.
But SimplePartition always returns number of stikyPartitionCache.partitionCache.partition()'s value.
If there's an unavailable partition (all replicas of that parition down), producing will fail with DefaulPartitioner. But Simpartition can make producing success.
I tested about this with old version of SimplePartitioner but did not with newer one.
Related
In Kafka producer, I am sending two different sets of data. I have two partitions for the topic. The first one is with a key and the second one is without a key. As far as I know the key is used to make partitions for the data. If the key is absent, null will be sent and the partition will be happening by round-robin scheduling.
But the question is if I am sending the data with and without key alternatively for some particular period of time, what will happen?
Will round robin scheduling happen for the partitions excluding the partition made by using key or will it happen for the all the two partitions?
Kafka select partition as per defined below rules
If used Custom Partitioner then partitioner will get selected based on Custom Partitioner logic.
If no Custom Partitioner then Kafka uses DefaultPartitioner
a. if the key is null then partition selected on round-robin.
b. If the key is non-null keys then It uses Murmur2 hash with modulo to identify partitions for the topic.
So message with key (null or not null) would get published on both partitions using Default Partitioner with no Custom Partitioner defined.
To achieve a message publish in a specific partition you can use the below method.
Pass partition explicitly while publishing a message
/**
* Creates a record to be sent to a specified topic and partition
*/
public ProducerRecord(String topic, Integer partition, K key, V value) {
this(topic, partition, null, key, value, null);
}
You can create Custom Partitioner and implement logic to select the partition
https://kafka.apache.org/10/javadoc/org/apache/kafka/clients/producer/Partitioner.html
I want to correct you. You said that the key is used to make partitions for the data. The key with a message is basically sent to get the message ordering for a specific field.
If key=null, data is sent round-robin (to a different partition and to a different broker in a distributed env. and of course to the same topic.).
If a key is sent, then all messages for that key will always go to the same partition.
Explain and example
key can be any string or integer, etc.. take an example of an integer employee_id as key.
So emplyee_id 123 will always go to partition 0, employee_id 345 will always go to partition 1. This is decided by the key hashing algorithm which depends on the number of partitions.
if you don't send any key then the message can go to any partition using a round-robin technique.
Kafka has a very organized scenario when it comes to sending and storing the records in the partitions. As you have mentioned, the Key is used for the purpose that the same key records go to the same partition. This helps in maintaining the chronology of those messages on that topic.
In your case, the two partitions will store the data as:
Partition 1: Store the data which contains a particular key with it. The records with this key will always go to this Partition. This is the concept of Custom Partitioning. Apart from this, the key with null values will also go to this partition as it follows the Round Robin Fashion to store the records
Partition 2: This partition will contain records which are entered without any key. i.e the key is null.
Can anyone explain:
How actually Kafka store keyed message? Does a partition only assigned to a key? I mean, is it possible that a partition stores messages with multiple keys?
If first question answer is yes, then how if the number of key is more than partition available?
My use case is, I am considering to send lot of ship data to brokers and store it by ship_id (MMSI, if you know) as key. The problem is, I dont know how many ship will be received then. So I can't define partition number in advance.
is it possible that a partition stores messages with multiple keys?
Yes, the murmur2 hash (algorithm used by Kafka), mod the number of partitions in a topic can result in the same number. For example, if you have only one partition, any key obviously goes to the same partition
how if the number of key is more than partition available?
The hash is modulo'd, so it always is assigned a valid partition
Now, if you have a well defined key, you are guaranteed ordering of messages into partitions, so the answer to the number of partitions really comes down to how much throughput a single partition can handle, and there is no short answer - how much data are you sending and how fast can one consumer get that data from one partition at "peak" consumption? Do appropriate performance tests, then scale the partition number up over new topics to handle potential future load
You'll also need to consider "hot" / "cold" data. If you have 10 partitions for example that mapped to the first digit of the ID, then all your data started with even numbers, you'd end up with half of the partitions being empty
1. Kafka messages are form of key and value and it stored into in topics. Topics are partitioned into multiple partitioner and each
partition further divided into segment each segment has a log file to
store the actual message in key - value form and index or offset of
the message.
Key is optional which is used to identify partition going to store message if key is null then message stored into round-robin way whereas if key is not null then it will use hash key with module partition size which guarantee to choose one of the partition.
e.g.
hash(key)%num_partition
public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);
int numPartitions = partitions.size();
if (keyBytes == null) {
int nextValue = nextValue(topic);
List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic);
if (availablePartitions.size() > 0) {
int part = Utils.toPositive(nextValue) % availablePartitions.size();
return availablePartitions.get(part).partition();
} else {
// no partitions are available, give a non-available partition
return Utils.toPositive(nextValue) % numPartitions;
}
} else {
// hash the keyBytes to choose a partition
return Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions;
}
}
So since its use module it will message always be stores in the range of available partitions and thats reason multiple keys may go to same partition. The main benefit of message key is to bucketing same message key should go to same partition.
2. So you no need to worry about number of partitions can be defined based on number of key. As mentioned above key is use to bucketing the messages to different partition based on Default partitioner logic. Partition number basically help to parallelize the process to high throughput.
Note:You also make sure by using key for partitioned data may cause
unequal distribution so if you don't worry just keep key null which select partition on round-robin
Other approach is to create custom partitioner to further refine partition selection logic.
here
I have a topic with 10 partitions, 1 consumer group with 4 consumers and worker size is 3.
I could see there is an uneven distribution of messages in the partitions, One partition is having so much data and another one is free.
How can I make my producer to evenly distribute the load into all the partitions, so that all partitions are being utilized properly?
According to the JavaDoc comment in the DefaultPartitioner class itself, the default partitioning strategy is:
If a partition is specified in the record, use it.
If no partition is specified but a key is present choose a partition based on a hash of the key.
If no partition or key is present choose a partition in a round-robin fashion.
https://github.com/apache/kafka/blob/trunk/clients/src/main/java/org/apache/kafka/clients/producer/internals/DefaultPartitioner.java
So here are two possible reasons that may be causing the uneven distribution, depending on whether you are specifying a key while producing the message or not:
If you are specifying a key and you are getting an uneven distribution using the DefaultPartitioner, the most apparent explanation would be that you are specifying the same key multiple times.
If you are not specifying a key and using the DefaultPartitioner, a non-obvious behavior could be happening. According to the above you would expect round-robin distribution of messages, but this is not necessarily the case. An optimization introduced in 0.8.0 could be causing the same partition to be used. Check this link for a more detailed explanation: https://cwiki.apache.org/confluence/display/KAFKA/FAQ#FAQ-Whyisdatanotevenlydistributedamongpartitionswhenapartitioningkeyisnotspecified? .
Instead of going for the default partitioner class you can assign the producer with a partition number so that message directly goes to the specified partition,
ProducerRecord<String, String> record = new ProducerRecord<String, String>(topicName, partitionNumber,key, value);
Seems like your problem is uneven consumption of messages rather than uneven producing of messages to Kafka topic. In other words, your amount of reading threads doesn't match amount of partitions you have (they do not need to match 1:1 though, only be the same amout of partitions to read from per each consumer thread).
See short explanation for more details.
You can make use of the key parameter of the producer record. Here is a thing that for a specific key the data goes in to the same partition always now, I don’t know the structure of your producer record but as you said you have 10 partition then you can use simply n%10 as your producer record key.
Where n is 0 to 9 now your for record 0 key will be 0 and then kafka will generate a hash key and put it in some partition say partition 0, and for record 1 it will be one and then it will go into the 1st partition and so on.
This way you will able to apply round robin on your producer record your key will be independent from the fields in your record so you can have a variable n and key as n%10.
Or you can specify the partition in your producer record. So either you use the key or the partition field of the producer record.
If you have defined partitioner from record let's say in Kafka key is string and value is student Pojo.
In student Pojo let's say based on student country field, I want to go in a specific partition. Imagine that there is 10 partitions in a topic and for example, in value, "India" is a country and based on "India" we got partition number 5.
Whenever country is "India", Kafka will allocate the 5 number partition and that record goes to the partition number 5 always (if the partition has not changed).
Let's say that in your pipeline there are lots of records which are coming and have a country "India", all those records will go to partition number 5, and you will see uneven distribution in Kafka partition.
In my case, I used the default partitioner but still had much much more records in one partition than in others. The problem was I unexpectedly had many records with the same key. Check your keys!
As I was unable to resolve this with Faust, the approach I am using is to implement the 'round-robin' distribution myself.
I iterate over my records to produce and do for example:
for index, message in enumerate(messages):
topic.send(message, partition=index % num_partitions)
I.e. bound my index to within the range of partitions I have.
There could still be unevenness - consider you repeatedly run this but your number of records is less than your num_partitions - then your first partitions will keep getting the major share of messages. You can avoid this issue by adding a random offset:
import random
initial_partition = random.randrange(0, num_partitions)
for index, message in enumerate(messages):
topic.send(message, partition=(initial_partition + index) % num_partitions)
I am looking for some clarification on the subject.
In Kafka documentations I found the following:
Kafka only provides a total order over messages within a partition,
not between different partitions in a topic. Per-partition ordering
combined with the ability to partition data by key is sufficient for
most applications. However, if you require a total order over messages
this can be achieved with a topic that has only one partition, though
this will mean only one consumer process per consumer group.
So here are my questions:
Does it mean if i want to have more than 1 consumer (from the same group) reading from one topic I need to have more than 1 partition?
Does it mean I need same amount of partitions as amount of consumers for the same group?
How many consumers can read from one partition?
Also have some questions regarding relationship between keys and partitions with regard to API. I only looked at .net APIs (especially one from MS) but looks like the mimic Java API.
I see when using a producer to send a message to a topic there is a key parameter. But when consumer reads from a topic there is a partition number.
How are partitions numbered? Starting from 0 or 1?
What exactly relationship between a key and partition?
As I understand some function on key will determine a partition. is that correct?
If I have 2 partitions in a topic and want some particular messages go to one partition and other messages go to another I should use a specific key for one specific partition, and the rest for another?
What if I have 3 partitions and one type of messages to one particular partition and the rest to other 2?
How in general I send messages to a particular partition in order to know for a consumer from where to read?
Or I better off with multiple topics?
Thanks in advance.
Does it mean if i want to have more than 1 consumer (from the same
group) reading from one topic I need to have more than 1 partition?
Let's see the following properties of kafka:
each partition is consumed by exactly one consumer in the group
one consumer in the group can consume more than one partition
the number of consumer processes in a group must be <= number
of partitions
With these properties, kafka is smartly able to provide both ordering guarantees and load balancing over a pool of consumer processes.
To answer your question, yes, in the context of the same group, if you want to have N consumers, you have to have at least N partitions.
Does it mean I need same amount of partitions as amount of consumers
for the same group?
I think this has been explained in the first answer.
How many consumers can read from one partition?
The number of consumers that can read from one partition is always equal to the number of consumer groups subscribing to that topic.
Relationship between keys and partitions with regard to API
First, we must understand that the producer is responsible for choosing which record to assign to which partition within the topic.
Now, lets see how producer does so. First, lets see the class definition of ProducerRecord.java :
public class ProducerRecord<K, V> {
private final String topic;
private final Integer partition;
private final Headers headers;
private final K key;
private final V value;
private final Long timestamp;
}
Here, the field that we have to understand from the class is partition.
From the ProducerRecord docs,
If a valid partition number is specified, that partition will be used when sending the record.
If no partition is specified but a key is present a partition will be chosen using a hash of the key.
If neither key nor partition is present a partition will be assigned in a round-robin fashion.
Partitions increase parallelism of Kafka topic. Any number of consumers/producers can use the same partition. Its up to application layer to define the protocol. Kafka guarantees delivery. Regarding the API, you may want to look at Java docs as they may be more complete. Based on my experience:
Partitions start from 0
Keys may be used to send messages to the same partition. For example hash(key)%num_partition. The logic is pluggable to Producer. https://kafka.apache.org/090/javadoc/index.html?org/apache/kafka/clients/producer/Partitioner.html
Yes. but be careful not to end up with some key that will result in the "dedicated" partition. For this, you may want to have dedicated topic. For example, control topic and data topic
This seems to be the same question as 3.
I believe consumers should not make assumptions of the data based on partition. The typical approach is to have consumer group that can read from multiple partitions of a topic. If you want to have dedicated channels, it is better (safer/maintainable) to use separate topics.
I am new to kafka so apology if I sound stupid but what I understood so far
is .. A stream of message can be defined as a topic, like a category. And every topic is divided
into one or more partitions (each partition can have multiple replicas). so they act in parallel
From the Kafka main site they say
The producer is able to chose which message to assign to which partition within the topic.
This can be done in a round-robin fashion simply to balance load or it can be done according to some semantic partition function (say based on some key in the message).
Does this mean while consuming I will be able to choose the message offset from particular partition?
While running multiple partitions is it possible to choose from one specific partition i.e partition 0?
In Kafka 0.7 quick start they say
Send a message with a partition key. Messages with the same key are sent to the same partition.
And the key can be provided while creating the producer as below
ProducerData<String, String> data = new ProducerData<String, String>("test-topic", "test-key", "test-message");
producer.send(data);
Now how do I consume message based on this key? what is the actual impact of using this key while producing in Kafka ?
While creating producer in 0.8beta we can provide the partitioner class attribute through the config file.
The custom partitioner class can be perhaps created implementing the kafka partitioner interface.
But m little confused how exactly it works. 0.8 doc also does not explain much. Any advice or m i missing something ?
This is what I've found so far ..
Define our own custom partitioner class by implementing the kafka Partitioner interface. The implemented method will have two arguments, first the key that we provide from the producer and next the number of partition available. So we can define our own logic to set which key of message goes to what partition.
Now while creating the producer we can specify our own partitioner class using the "partitioner.class" attribute
props.put("partitioner.class", "path.to.custom.partitioner.class");
If we don't mention it then Kafka will use its default class and try to distribute message evenly among the partitions available.
Also inform Kafka how to serialize the key
props.put("key.serializer.class", "kafka.serializer.StringEncoder");
Now if we send some message using a key in the producer the message will be delivered to a specific partition (based on our logic written on the custom partitioner class), and in the consumer (SimpleConsumer) level we can specify the partition to retrieve the specific messages.
In case we need to pass a String as a key, the same should be handled in the custom partitioner class ( take hash value of the key and then take first two digit etc )
Each topic in Kafka is split into many partitions. Partition allows for parallel consumption increasing throughput.
Producer publishes the message to a topic using the Kafka producer client library which balances the messages across the available partitions using a Partitioner. The broker to which the producer connects to takes care of sending the message to the broker which is the leader of that partition using the partition owner information in zookeeper. Consumers use Kafka’s High-level consumer library (which handles broker leader changes, managing offset info in zookeeper and figuring out partition owner info etc implicitly) to consume messages from partitions in streams; each stream may be mapped to a few partitions depending on how the consumer chooses to create the message streams.
For example, if there are 10 partitions for a topic and 3 consumer instances (C1,C2,C3 started in that order) all belonging to the same Consumer Group, we can have different consumption models that allow read parallelism as below
Each consumer uses a single stream.
In this model, when C1 starts all 10 partitions of the topic are mapped to the same stream and C1 starts consuming from that stream. When C2 starts, Kafka rebalances the partitions between the two streams. So, each stream will be assigned to 5 partitions(depending on the rebalance algorithm it might also be 4 vs 6) and each consumer consumes from its stream. Similarly, when C3 starts, the partitions are again rebalanced between the 3 streams. Note that in this model, when consuming from a stream assigned to more than one partition, the order of messages will be jumbled between partitions.
Each consumer uses more than one stream (say C1 uses 3, C2 uses 3 and C3 uses 4).
In this model, when C1 starts, all the 10 partitions are assigned to the 3 streams and C1 can consume from the 3 streams concurrently using multiple threads. When C2 starts, the partitions are rebalanced between the 6 streams and similarly when C3 starts, the partitions are rebalanced between the 10 streams. Each consumer can consume concurrently from multiple streams. Note that the number of streams and partitions here are equal. In case the number of streams exceed the partitions, some streams will not get any messages as they will not be assigned any partitions.
Does this mean while consuming I will be able to choose the message offset from particular partition? While running multiple partitions is it possible to choose from one specific partition i.e partition 0?
Yes you can choose message from one specific partition from your consumer but if you want that to be identified dynamically then it depends on the logic how you have implemented Partitioner Class in your producer.
Now how do I consume message based on this key? what is the actual impact of using this key while producing in Kafka ?
There are two way of consuming the message. One is using Zookeeper Host and another is Static Host. Zookeper host consumes message from all partition. However if you are uisng Static Host than you can provide broker with partition number that needs to be consumed.
Please check below example of Kafka 0.8
Producer
KeyedMessage<String, String> data = new KeyedMessage<String, String>(<<topicName>>, <<KeyForPartition>>, <<Message>>);
Partition Class
public int partition(Object arg0, int arg1) {
// arg0 is the key given while producing, arg1 is the number of
// partition the broker has
long organizationId = Long.parseLong((String) arg0);
// if the given key is less than the no of partition available then send
// it according to the key given Else send it to the last partition
if (arg1 < organizationId) {
return (arg1 - 1);
}
// return (int) (organizationId % arg1);
return Integer.parseInt((String) arg0);
}
So the partiotioner class decide where to send message based on your logic.
Consumer (PN:I have used Storm Kafka 0.8 integration)
HostPort hosts = new HostPort("10.**.**.***",9092);
GlobalPartitionInformation gpi = new GlobalPartitionInformation();
gpi.addPartition(0, hosts);
gpi.addPartition(2, hosts);
StaticHosts statHost = new StaticHosts(gpi);
SpoutConfig spoutConf = new SpoutConfig(statHost, <<topicName>>, "/kafkastorm", <<spoutConfigId>>);