Paraview - get current time_index in ProgrammableSource - paraview

I have an array that has exactly as many rows as there are time steps in the animation. Now I want to have the row associated to the current time step as vtkTable as output of a ProgrammableSource. My code (for the ProgrammableSource) so far looks like this:
import numpy as np
file = "table.csv"
tbl = np.genfromtxt(file, names=True, delimiter=",", autostrip=True)
for n in tbl.dtype.names:
v = tbl[n][2]
output.RowData.append(v, n)
Which currently always writes out the third line (v = tbl[n][2]). Is there a way to pass the current time step (index) in place of [2]?

The best is to make your Programmable Source timesteps aware.
So you should fill the Information Script (advanced property) to declare the list of available timesteps, and then in the main script, get current timestep and output the data you want.
See this example from the doc.

Related

MIC-1 Simulation how to get started

Not sure how to start this..
For the given high-level code:
c = b - a;
a = a * 2;
complete the tasks:
create corresponding ijvm hexcode
store into appropriate cells
simulate the instructions
show changing contents of each data cell using "/", using the notation:
< old_value > / < new_value >
Start by writing the equivalent instructions in IJVM. If you are using Tannenbaum's book, there is a simple example for doing a calculation like one of these statements.
Since you have to update the contents of the registers in the data path, IJVM is not sufficient. If you only had to show the contents of the stack, the IJVM would suffice. Tannenbaum has an example of how the stack changes from IJVM instructions.
Once you have the IJVM, look up the opcodes in the instruction table and change operands into offsets from LV.
You will have to take the IJVM instructions and simulate them through MIC-1. Fill in the stack and registers with initial values. Show how the values change as you step through the code, using paper and pen.

How to track function calls in MATLAB?

I would like a way to track all function calls that have operated on a specific workspace variable -- for instance, a sound waveform that will be transformed by various signal processing functions.
One cumbersome and fragile way is to do this:
>> cfg = [];
>> curr_call = 'data_out = my_function(cfg,data_in);';
>> eval(curr_call);
>> data_out.cfg.history = cat(1,data_out.cfg.history,{curr_call});
What would be much better is the following:
>> cfg = [];
>> data_out = my_function(cfg,data_in);
>> data_out.cfg.history
'data_out = my_function(cfg,data_in);'
EDIT for clarification: In other words, this variable has a field, cfg.history, that keeps track of all history-enabled functions that have operated on it (ideally with arguments). The history field should be updated regardless of where function calls originate: my example above is from the command line, but calls made from cell mode or within a script should also be appended to the history. Obviously, I can edit my_function() in the above example so that it can modify the history field.
NOTE in response to discussion below: the motivation for doing this is to have the history "attached" to the data in question, rather than say, in a separate log file which would then need to be packaged with the data somehow.
Can this be done?
You can access the full Session history using this code:
import com.mathworks.mlservices.MLCommandHistoryServices
history=MLCommandHistoryServices.getSessionHistory;
To achive what you want, use this code:
import com.mathworks.mlservices.MLCommandHistoryServices;
startcounter=numel(MLCommandHistoryServices.getSessionHistory);
disp('mydummycommand');
disp('anotherdummycommand');
history=MLCommandHistoryServices.getSessionHistory;
commands=cell(history(startcounter-2:end-1));
Be aware that these functions are undocumented. It uses the command history which is typically located at the bottom right in your matlab.

Debugging a for loop in matlab

I've been looking throught the documentation, but can't seem to find the bit I want.
I have a for loop and I would like to be able to view every value in the for loop.
for example here is a part of my code:
for d = 1 : nb
%for loop performs blade by blade averaging and produces a column vector
for cc = navg : length(atbmat);
atb2 = (sum(atbmat((cc-(navg-1):cc),d)))/navg;
atbvec2(:,cc) = atb2;
end
%assigns column vector 'atbvec2' to the correct column of the matrix 'atbmat2'
atbmat2(d,1:length(atbvec2)) = atbvec2;
end
I would like to view every value of atb2. I'm a python user(new to MATLAB) and would normally use a simple print statement to find this.
I'm sure there is a way to do it, but I can't quite find how.
Thankyou in advance.
you can use disp in Matlab to print to the screen but you might want to use sprintf first to format it nicely. However for debugging you're better off using a break point and then inspect the variable in the workspace browser graphically. To me, this is one of Matlab's best features.
Have a look at the "Examine Values" section of this article
The simplest way to view it everywhere is to change this line:
atb2 = (sum(atbmat((cc-(navg-1):cc),d)))/navg;
Into this, without semicolon:
atb2 = (sum(atbmat((cc-(navg-1):cc),d)))/navg
That being said, given the nature of your calculation, you could get the information you need as well by simply storing every value of abt2 and observing them afterwards. This may be done in atbmat2 already?
If you want to look at each value at the time it happens, consider setting a breakpoint or conditional breakpoint after the line where abt2 is assigned.

Matlab: dynamic name for structure

I want to create a structure with a variable name in a matlab script. The idea is to extract a part of an input string filled by the user and to create a structure with this name. For example:
CompleteCaseName = input('s');
USER WRITES '2013-06-12_test001_blabla';
CompleteCaseName = '2013-06-12_test001_blabla'
casename(12:18) = struct('x','y','z');
In this example, casename(12:18) gives me the result test001.
I would like to do this to allow me to compare easily two cases by importing the results of each case successively. So I could write, for instance :
plot(test001.x,test001.y,test002.x,test002.y);
The problem is that the line casename(12:18) = struct('x','y','z'); is invalid for Matlab because it makes me change a string to a struct. All the examples I find with struct are based on a definition like
S = struct('x','y','z');
And I can't find a way to make a dynamical name for S based on a string.
I hope someone understood what I write :) I checked on the FAQ and with Google but I wasn't able to find the same problem.
Use a structure with a dynamic field name.
For example,
mydata.(casename(12:18)) = struct;
will give you a struct mydata with a field test001.
You can then later add your x, y, z fields to this.
You can use the fields later either by mydata.test001.x, or by mydata.(casename(12:18)).x.
If at all possible, try to stay away from using eval, as another answer suggests. It makes things very difficult to debug, and the example given there, which directly evals user input:
eval('%s = struct(''x'',''y'',''z'');',casename(12:18));
is even a security risk - what happens if the user types in a string where the selected characters are system(''rm -r /''); a? Something bad, that's what.
As I already commented, the best case scenario is when all your x and y vectors have same length. In this case you can store all data from the different files into 2 matrices and call plot(x,y) to plot each column as a series.
Alternatively, you can use a cell array such that:
c = cell(2,nufiles);
for ii = 1:numfiles
c{1,ii} = import x data from file ii
c{2,ii} = import y data from file ii
end
plot(c{:})
A structure, on the other hand
s.('test001').x = ...
s.('test001').y = ...
Use eval:
eval(sprintf('%s = struct(''x'',''y'',''z'');',casename(12:18)));
Edit: apologies, forgot the sprintf.

Call graph generation from matlab src code

I am trying to create a function call graph for around 500 matlab src files. I am unable to find any tools which could help me do the same for multiple src files.
Is anyone familiar with any tools or plugins?
In case any such tools are not available, any suggestions on reading 6000 lines of matlab code
without documentation is welcome.
Let me suggest M2HTML, a tool to automatically generate HTML documentation of your MATLAB m-files. Among its feature list:
Finds dependencies between functions and generates a dependency graph (using the dot tool of GraphViz)
Automatic cross-referencing of functions and subfunctions with their definition in the source code
Check out this demo page to see an example of the output of this tool.
I recommend looking into using the depfun function to construct a call graph. See http://www.mathworks.com/help/techdoc/ref/depfun.html for more information.
In particular, I've found that calling depfun with the '-toponly' argument, then iterating over the results, is an excellent way to construct a call graph by hand. Unfortunately, I no longer have access to any of the code that I've written using this.
I take it you mean you want to see exactly how your code is running - what functions call what subfunctions, when, and how long those run for?
Take a look at the MATLAB Code Profiler. Execute your code as follows:
>> profile on -history; MyCode; profile viewer
>> p = profile('info');
p contains the function history, From that same help page I linked above:
The history data describes the sequence of functions entered and exited during execution. The profile command returns history data in the FunctionHistory field of the structure it returns. The history data is a 2-by-n array. The first row contains Boolean values, where 0 means entrance into a function and 1 means exit from a function. The second row identifies the function being entered or exited by its index in the FunctionTable field. This example [below] reads the history data and displays it in the MATLAB Command Window.
profile on -history
plot(magic(4));
p = profile('info');
for n = 1:size(p.FunctionHistory,2)
if p.FunctionHistory(1,n)==0
str = 'entering function: ';
else
str = 'exiting function: ';
end
disp([str p.FunctionTable(p.FunctionHistory(2,n)).FunctionName])
end
You don't necessarily need to display the entrance and exit calls like the above example; just looking at p.FunctionTable and p.FunctionHistory will suffice to show when code enters and exits functions.
There are already a lot of answers to this question.
However, because I liked the question, and I love to procrastinate, here is my take at answering this (It is close to the approach presented by Dang Khoa, but different enough to be posted, in my opinion):
The idea is to run the profile function, along with a digraph to represent the data.
profile on
Main % Code to be analized
p = profile('info');
Now p is a structure. In particular, it contains the field FunctionTable, which is a structure array, where each structure contains information about one of the calls during the execution of Main.m. To keep only the functions, we will have to check, for each element in FunctionTable, if it is a function, i.e. if p.FunctionTable(ii).Type is 'M-function'
In order to represent the information, let's use a MATLAB's digraph object:
N = numel(p.FunctionTable);
G = digraph;
G = addnode(G,N);
nlabels = {};
for ii = 1:N
Children = p.FunctionTable(ii).Children;
if ~isempty(Children)
for jj = 1:numel(Children)
G = addedge(G,ii,Children(jj).Index);
end
end
end
Count = 1;
for ii=1:N
if ~strcmp(p.FunctionTable(ii).Type,'M-function') % Keep only the functions
G = rmnode(G,Count);
else
Nchars = min(length(p.FunctionTable(ii).FunctionName),10);
nlabels{Count} = p.FunctionTable(ii).FunctionName(1:Nchars);
Count = Count + 1;
end
end
plot(G,'NodeLabel',nlabels,'layout','layered')
G is a directed graph, where node #i refers to the i-th element in the structure array p.FunctionTable where an edge connects node #i to node #j if the function represented by node #i is a parent to the one represented by node #j.
The plot is pretty ugly when applied to my big program but it might be nicer for smaller functions:
Zooming in on a subpart of the graph:
I agree with the m2html answer, I just wanted to say the following the example from the m2html/mdot documentation is good:
mdot('m2html.mat','m2html.dot');
!dot -Tps m2html.dot -o m2html.ps
!neato -Tps m2html.dot -o m2html.ps
But I had better luck with exporting to pdf:
mdot('m2html.mat','m2html.dot');
!dot -Tpdf m2html.dot -o m2html.pdf
Also, before you try the above commands you must issue something like the following:
m2html('mfiles','..\some\dir\with\code\','htmldir','doc_dir','graph','on')
I found the m2html very helpful (in combination with the Graphviz software). However, in my case I wanted to create documentation of a program included in a folder but ignoring some subfolders and .m files. I found that, by adding to the m2html call the "ignoreddir" flag, one can make the program ignore some subfolders. However, I didn't find an analogue flag for ignoring .m files (neither does the "ignoreddir" flag do the job). As a workaround, adding the following line after line 1306 in the m2html.m file allows for using the "ignoreddir" flag for ignoring .m files as well:
d = {d{~ismember(d,{ignoredDir{:}})}};
So, for instance, for generating html documentation of a program included in folder "program_folder" but ignoring "subfolder_1" subfolder and "test.m" file, one should execute something like this:
m2html( 'mfiles', 'program_folder', ... % set program folder
'save', 'on', ... % provide the m2html.mat
'htmldir', './doc', ... % set doc folder
'graph', 'on', ... % produce the graph.dot file to be used for the visualization, for example, as a flux/block diagram
'recursive', 'on', ... % consider also all the subfolders inside the program folders
'global', 'on', ... % link also calls between functions in different folders, i.e., do not link only the calls for the functions which are in the same folder
'ignoreddir', { 'subfolder_1' 'test.m' } ); % ignore the following folders/files
Please note that all subfolders with name "subfolder_1" and all files with name "test.m" inside the "program_folder" will be ignored.