Create interface with generic types - swift

I'm trying to create public interface for my class operating on generics.
I've created interface
public protocol StorageProtocol {
associatedtype StorageObject: Codable
func store(storeObject: StorageObject)
func get() -> StorageObject?
}
and implementation
public class Storage<T: Codable>: StorageProtocol {
public func store(storeObject: T) {}
public func get() -> T?
Now, when I try to create instance it forces me any keyword
let myStorage: any StorageProtocol = Storage<Credentials>()
and I can't call storage.store(storeObject: Credentials()) as I'm getting error:
Associated type 'StorageObject' can only be used with a concrete type or generic parameter base.
What I'm missing here?

The compiler does not know what type to require in the parameter storeObject when you constrain myStorage to be any StoreageProtocol, as the generic StorageObject could be any Codable object. A workaround could be to explicitly add a parameter for the type of the generic.
public protocol StorageProtocol<StorageObject> { // add a generic parameter
associatedtype StorageObject: Codable
func store(storeObject: StorageObject)
func get() -> StorageObject?
}
and then when you define the variable
let myStorage: any StorageProtocol<Credentials> = Storage<Credentials>()
Then the compiler will know you want to store Credentials for this variable and allow you to call store as you specialized the protocol to the correct type.

Related

Swift Initialize struct based on typealias

I want my code to be as reusable as it can be. Writer and JsonProperties are Protocols that define plenty of the functionality the related objects require. JsonProperties conforms to Codable protocol, but I want to implement a custom method for Core Data implementation, through a Writer, the question is:
Can I initialize an object that implements a Writer protocol through the typealias of JsonProperties?
Right now I'm getting this error:
Cannot convert value of type '[Model]' to expected argument type '[Model.WriterType.Model]'
Here's the code:
protocol Writer {
associatedtype Model: JsonProperties
...
init(in dataStack: DataStack)
}
struct GenericWriter<Model: JsonProperties>: Writer { ... }
protocol JsonProperties: Codable {
associatedtype WriterType: Writer
...
}
struct ConversationProperties: JsonProperties {
typealias WriterType = GenericWriter<Self>
...
}
The implementation I was looking for, but got the error was:
func networkFetch<Model: JsonProperties>(type: Model.Type) -> AnyPublisher<Bool, Error> {
let writer = Model.WriterType(in: dataStack)
...
var objects = [Model]()
...
writer.insert(objects) <- Error here!
My guess this is not the correct implementation of the init() of a typealias struct.
The problem you're seeing stems from the fact that you not haven't constrained the associate type WriterType within JsonProperties.
Currently, it accepts any WriterType type conforming to Writer, regardless of what its Model is.
What you probably want is for the WriterType type to have its Model be the same as the type being conformed to JsonProperties protocol - so you need to constrain it:
protocol JsonProperties: Codable {
associatedtype WriterType: Writer where WriterType.Model == Self
}
The insert method accepts a [Model], where Model is the associated type of Writer.
writer is of type Model.WriterType where WriterType is a Writer, so writer.insert accepts Model.WriterType.Model. Here, the first Model is the generic parameter of networkFetch, whereas the second Model is the associated type of the Writer protocol.
However, you have created a [Model]. This Model refers to the generic parameter of networkFetch, not the associated type.
There is actually no guarantee that your generic parameter Model is the same type as Model.WriterTypeModel.Model. For example, I could do:
struct FooProperties: JsonProperties {
typealias WriterType = GenericWriter<ConversationProperties>
}
And if I pass FooProperties.self to networkFetch, the generic parameter Model would be FooProperties, but Model.WriterType.Model would be ConversationProperties.
There are many ways to fix this.
You can constrain the WriterType associated type to forbid me from creating a FooProperties in the first place:
protocol JsonProperties: Codable {
associatedtype WriterType: Writer where WriterType.Model == Self
}
You can constraint the generic parameter Model:
func networkFetch<Model: JsonProperties>(type: Model.Type) -> AnyPublisher<Bool, Error>
where Model.WriterType.Model == Model {
You can create an array of Model.WriterType.Model instead (this will not work if you are deserialising objects of type Model and putting them into this array)
var objects = [Model.WriterType.Model]()

Swift Generics - Attempting to make a generic protocol concrete fails when attempting to use specialised sub-protocol as variable

I want to know why my SomeResourceRepository is still generic, even though it is only defined in one case only, which is when I set ResourceType = SomeResource, which XCode formats as below with the where clause. Code below which shows the exact setup I'm trying to achieve, written in a Playground.
I am trying to define a generic protocol for any given ResourceType such that the ResourceTypeRepository protocol then automatically requires the same set of functions, without having to copy-paste most of GenericRepository only to manually fill in the ResourceType for each Repository I make. The reason I need this as a protocol is because I want to be able to mock this for testing purposes later. So I'll provide an implementation of said protocol somewhere else in the actual app.
My interpretation of the code below is that it should work, because both SomeResourceLocalRepository and SomeResourceRemoteRepository are concrete, as I have eliminated the associated type by defining them "on top of" SomeResourceRepository, which is only defined where ResourceType == SomeResource.
import Foundation
struct SomeResource: Identifiable {
let id: String
let name: String
}
struct WhateverResource: Identifiable {
let id: UUID
let count: UInt
}
protocol GenericRepository: class where ResourceType: Identifiable {
associatedtype ResourceType
func index() -> Array<ResourceType>
func show(id: ResourceType.ID) -> ResourceType?
func update(resource: ResourceType)
func delete(id: ResourceType.ID)
}
protocol SomeResourceRepository: GenericRepository where ResourceType == SomeResource {}
protocol SomeResourceLocalRepository: SomeResourceRepository {}
protocol SomeResourceRemoteRepository: SomeResourceRepository {}
class SomeResourceLocalRepositoryImplementation: SomeResourceLocalRepository {
func index() -> Array<SomeResource> {
return []
}
func show(id: String) -> SomeResource? {
return nil
}
func update(resource: SomeResource) {
}
func delete(id: String) {
}
}
class SomeResourceService {
let local: SomeResourceLocalRepository
init(local: SomeResourceLocalRepository) {
self.local = local
}
}
// Some Dip code somewhere
// container.register(.singleton) { SomeResourceLocalRepositoryImplementation() as SomeResourceLocalRepository }
Errors:
error: Generic Protocols.xcplaygroundpage:45:16: error: protocol 'SomeResourceLocalRepository' can only be used as a generic constraint because it has Self or associated type requirements
let local: SomeResourceLocalRepository
^
error: Generic Protocols.xcplaygroundpage:47:17: error: protocol 'SomeResourceLocalRepository' can only be used as a generic constraint because it has Self or associated type requirements
init(local: SomeResourceLocalRepository) {
I will probably have to find another way to accomplish this, but it is tedious and quite annoying as we will produce a lot of duplicate code, and when we decide to change the API of our repositories, we will have to manually change it for all the protocols as we don't follow a generic "parent" protocol in this work-around.
I have read How to pass protocol with associated type as parameter in Swift and the related question found in an answer to this question, as well as Specializing Generic Protocol and others.
I feel like this should work, but it does not. The end goal is a concrete protocol that can be used for dependency injection, e.g. container.register(.singleton) { ProtocolImplementation() as Protocol } as per Dip - A simple Dependency Injection Container, BUT without copy-pasting when the protocol's interface clearly can be made generic, like in the above.
As swift provides a way to declare generic protocols (using associatedtype keyword) it's impossible to declare a generic protocol property without another generic constraint. So the easiest way would be to declare resource service class generic - class SomeResourceService<Repository: GenericRepository>.
But this solution has a big downside - you need to constraint generics everywhere this service would be involved.
You can drop generic constraint from the service declaration by declaring local as a concrete generic type. But how to transit from generic protocol to the concrete generic class?
There's a way. You can define a wrapper generic class which conforms to GenericRepository. It does not really implements its methods but rather passes to an object (which is real GenericRepository) it wraps.
class AnyGenericRepository<ResourceType: Identifiable>: GenericRepository {
// any usage of GenericRepository must be a generic argument
init<Base: GenericRepository>(_ base: Base) where Base.ResourceType == ResourceType {
// we cannot store Base as a class property without putting it in generics list
// but we can store closures instead
indexGetter = { base.index() }
// and same for other methods or properties
// if GenericRepository contained a generic method it would be impossible to make
}
private let indexGetter: () -> [ResourceType] {
indexGetter()
}
// ... other GenericRepository methods
}
So now we have a concrete type which wraps real GenericRepository. You can adopt it in SomeResourceService without any alarm.
class SomeResourceService {
let local: AnyGenericRepository<SomeResource>
}

How to define a Swift protocol that enforces its adopters themselves to conform to an associated type?

I need to work with objects that not only conform to a protocol, but also expose the type of a second protocol which they conform to. (This is for use with NSXPCConnection, where you must configurable not only an object to proxy, but also tell it which protocol should be exposed on that proxied object.)
I tried something like:
protocol Conformer where Self : Conformer.P {
associatedtype P : Protocol
static var interface : P {get}
init(info: String)
}
func exposeOverXPC<T:Conformer>(_ _: T.Type) {
let c : NSXPCConnection = …
c.exportedInterface = NSXPCInterface(with: T.interface)
c.exportedObject = T(info:"foo")
}
But it results in an error:
Associated type 'P' can only be used with a concrete type or generic parameter base
Specifically I want exposeOverXPC to only accept objects that:
Are initializeable in a particular way
Have a static property interface which references a protocol
Are themselves conformant to said interface
It's the last step that I'm getting stuck on, is there any way I can accomplish it?
You cannot restrict who conforms to a protocol, that goes against the concept of having protocols in the first place if you think about it. However you can use composed types, Swift4 feature, in your generic parameter in exposeOverXPC.
protocol Interface {
}
protocol XPCExposable {
associatedtype P: Interface
init(info: String)
static var interface: P { get }
}
func exposeOverXPC<T: XPCExposable & Interface>(_ : T.Type) {
// 1: T is initializeable in a particular way
// 2: Has a static property interface which references a protocol
// 3: Are themselves conformant to said interface
}
Yes this constraints T to conform to Interface and not P, your best bet is to make exposeOverXPC private/internal and provide APIs that expect Interface subtype. wherever you have access to the Interface subtype expose that api. e.g:
Solution 1
protocol InterfaceSubType: Interface {
fun test()
}
/// Create as many `API`s as the number of `Interface` subtypes you have.
func exposeOverXPC<T: XPCExposable & InterfaceSubType>(_ : T.Type) {
exposeOverXPC(T.self)
}
/// set to private, you only want to expose the APIs with `Interface` subtype.
private func exposeOverXPC<T: XPCExposable & Interface>(_ : T.Type) {
// Impl.
}
Solution 2
An alternative solution to have a function with parameters whose type is the associated type is to add that api (as static function if you wish) by extending the protocol. You must know all the expected subtypes of Interface in this extension.
extension XPCExposable {
static func exposeOverXPC<T>(_ interface: P, _ xpcType: T.Type) where T: XPCExposable {
// Expected subtype Interface
if let subInterface = interface as? InterfaceSubType {
subInterface.test()
}
// Other subtypes here.
}
}
Can be called as:
let impl = Impl(info: "")
Impl.exposeOverXPC(Impl.interface, Impl.self)
Its an extension on XPCExposable so you constrain the caller to be a conformer and the parameter requires XPCExposable.P so you're all set.
Downsides of this solution are:
You have two parameters instead of one.
It uses if conditions, I don't know if thats worth mentioning as downside other than that I'd like to push the first solution as favourite.

Generics Protocol as Type in Swift

How I can create a protocol variable. My goal is a protocol will be have a function with a generic type and I'm using associatedtype which is accessing to Class and the function will be return generic type. Example declaration below:
public protocol ComponentFactory {
associatedtype T // A class and that class can be inherit from another so I need define generic type here
func create() -> T
}
I want to declare a variable for this protocol like that:
fileprivate var mComponentFactoryMap = Dictionary<String, ComponentFactory>()
At this line I receive a error:
Protocol 'ComponentFactory' can only be used as a generic constraint because it has Self or associated type requirements
I see from Android, actually from kotlin they have a declare for interface like:
private val mComponentFactoryMap = mutableMapOf<String, ComponentFactory<*>>()
Any guys can help me, how I can declare this from Swift?
I've solved this from few months ago with descriptions below. Please check it and give me another solution if you have.
Firstly, make some change for Protocol. At associatedtype T should be change to associatedtype Component and Component is a class which will be inherited from another class (important step).
public protocol ProComponentFactory {
associatedtype Component
func create() -> Component?
}
Second, I will make a Generic Struct with inheritance from ProComponentFactory:
public struct ComponentFactory<T>: ProComponentFactory {
public typealias Component = T
public func create() -> T? { return T.self as? T }
}
Well done, for now you can define a variable as I example in my question above:
fileprivate var mComponentFactoryMap = Dictionary<String, ComponentFactory<Component>>()
As well for any class was inherit from Component and variable mComponentFactoryMap can using extension inside.

Swift: Generic Protocols

I have some swift structs for which protocol compliance is generated with individual extensions with equal methods names which just differ in their return types which are struct dependent. On top of That I want to use them in a generic function which Calls a protocol conforming function for a generic type).
I tried to accomplish this like that:
//: Playground - noun: a place where people can play
import UIKit
protocol FooProt {
typealias T;
static func createMe<T>()->T;
}
struct FooStruct{
}
extension FooStruct: FooProt{
typealias T = FooStruct;
static func createMe () -> FooStruct{
return FooStruct();
}
}
class Creator{
fun createOne<T where T:FooProt>(type:T.Type){
let instance = T.createMe();
}
}
Unfortunately I get the following error :
/var/folders/sn/78_zvfd15d74dzn01mdv258h0000gq/T/./lldb/3741/playground6.swift:7 :17: note: protocol requires function 'createMe()' with type ' () -> T' (aka '<τ_1_0> () -> τ_1_0')
static func createMe()->T;
What exactly doesn't comply here and is there a workaround ?
There are several problems with your code. On the one hand you have defined a protocol with an associated type. However, you define your createMe() method as a generic which uses some other type. I don't think that was your intent. I think your intent was to have a createMe() method that returns the same type as the protocol's associated type. In this case you need to remove the from the createMe() method. Also, the name createMe() implies that you aren't just returning any type, but the type of the object on which this method is being called. In this case, you don't even need an associated type protocol. You just need a protocol with a Self constraint which allows your code to be a bit simpler. In your Creator's createOne method, your type constraint is more complex than needed.
I think you want the following code:
protocol FooProt {
static func createMe()->Self;
}
struct FooStruct{
}
extension FooStruct: FooProt {
static func createMe() -> FooStruct {
return FooStruct();
}
}
class Creator{
func createOne<T:FooProt>(type: T.Type) -> T {
return T.createMe()
}
}
let foo = Creator().createOne(FooStruct.self)
Here is an alternate solution using an initializer in the protocol instead of a static method.
protocol FooProt {
init()
}
struct FooStruct{
}
extension FooStruct: FooProt {
}
class Creator{
func createOne<T:FooProt>(type: T.Type) -> T {
return T.init()
}
}
let foo = Creator().createOne(FooStruct.self)