How can i use nvl function in scala - scala

I am trying to code the following :
df.select(nvl(col("id"),0))
When I execute this, I get an error value nvl not found.
Please help me to solve this issue.

In Spark its called coalesce, you can check this article for more details
# create new column with non Null values
tmp = testDF.withColumn('newColumn', coalesce(testDF['id'], testDF['number']))
# Check the content of new df
tmp.show()
+----+------+---------+
| id|number|newColumn|
+----+------+---------+
| 1| 1| 1|
| 2| 2| 2|
|null| 3| 3|
| 4| null| 4|
+----+------+---------+
In your case it may look like this:
df.select(coalesce(col("id"),lit(0)))

You can use a when-otherwise construct as well - see the snippet below:
df = spark.createDataFrame([(1, 2), (2, None), (None, 3)], "id: int, value: int")
df.withColumn("non_null_value", when(col("value").isNull(), 0).otherwise(col("value"))).show()
+----+-----+--------------+
| id|value|non_null_value|
+----+-----+--------------+
| 1| 2| 2|
| 2| null| 0|
|null| 3| 3|
+----+-----+--------------+

Related

How to do a groupBy by a given column but still keep all the rows of the original DataFrame?

I want to do a groupBy and aggregate by a given column in PySpark but I still want to keep all the rows from the original DataFrame.
For example lets say we have the following DataFrame and we want to do a max on the "value" column then we would get the result below.
Original DataFrame
+--+-----+
|id|value|
+--+-----+
| 1| 1|
| 1| 2|
| 2| 3|
| 2| 4|
+--+-----+
Result
+--+-----+---+
|id|value|max|
+--+-----+---+
| 1| 1| 2|
| 1| 2| 2|
| 2| 3| 4|
| 2| 4| 4|
+--+-----+---+
You can do it simply by joining aggregated dataframe with original dataframe
aggregated_df = (
df
.groupby('id')
.agg(F.max('value').alias('max'))
)
max_value_df = (
df
.join(aggregated_df, 'id')
)
Use window function
df.withColumn('max', max('value').over(Window.partitionBy('id'))).show()
+---+-----+---+
| id|value|max|
+---+-----+---+
| 1| 1| 2|
| 1| 2| 2|
| 2| 3| 4|
| 2| 4| 4|
+---+-----+---+

Spark Categorize ordered dataframe values by a condition

Let's say I have a dataframe
val userData = spark.createDataFrame(Seq(
(1, 0),
(2, 2),
(3, 3),
(4, 0),
(5, 3),
(6, 4)
)).toDF("order_clause", "some_value")
userData.withColumn("passed", when(col("some_value") <= 1.5,1))
.show()
+------------+----------+------+
|order_clause|some_value|passed|
+------------+----------+------+
| 1| 0| 1|
| 2| 2| null|
| 3| 3| null|
| 4| 0| 1|
| 5| 3| null|
| 6| 4| null|
+------------+----------+------+
That dataframe is ordered by order_clause. When values in some_value become smaller than 1.5 I can say one round is done.
What I want to do is create column round like:
+------------+----------+------+-----+
|order_clause|some_value|passed|round|
+------------+----------+------+-----+
| 1| 0| 1| 1|
| 2| 2| null| 1|
| 3| 3| null| 1|
| 4| 0| 1| 2|
| 5| 3| null| 2|
| 6| 4| null| 2|
+------------+----------+------+-----+
Now I could be able to get subsets of rounds in this dataframe. I searched for hints how to do this but have not found a way to do this.
You're probably looking for a rolling sum of the passed column. You can do it using a sum window function:
import org.apache.spark.sql.expressions.Window
val result = userData.withColumn(
"passed",
when(col("some_value") <= 1.5, 1)
).withColumn(
"round",
sum("passed").over(Window.orderBy("order_clause"))
)
result.show
+------------+----------+------+-----+
|order_clause|some_value|passed|round|
+------------+----------+------+-----+
| 1| 0| 1| 1|
| 2| 2| null| 1|
| 3| 3| null| 1|
| 4| 0| 1| 2|
| 5| 3| null| 2|
| 6| 4| null| 2|
+------------+----------+------+-----+
Or more simply
import org.apache.spark.sql.expressions.Window
val result = userData.withColumn(
"round",
sum(when(col("some_value") <= 1.5, 1)).over(Window.orderBy("order_clause"))
)

Spark Dataframe: Group and rank rows on a certain column value

I am trying to rank a column when the "ID" column numbering starts from 1 to max and then resets from 1.
So, the first three rows have a continuous numbering on "ID"; hence these should be grouped with group rank =1. Rows four and five are in another group, group rank = 2.
The rows are sorted by "rownum" column. I am aware of the row_number window function but I don't think I can apply for this use case as there is no constant window. I can only think of looping through each row in the dataframe but not sure how I can update a column when number resets to 1.
val df = Seq(
(1, 1 ),
(2, 2 ),
(3, 3 ),
(4, 1),
(5, 2),
(6, 1),
(7, 1),
(8, 2)
).toDF("rownum", "ID")
df.show()
Expected result is below:
You can do it with 2 window-functions, the first one to flag the state, the second one to calculate a running sum:
df
.withColumn("increase", $"ID" > lag($"ID",1).over(Window.orderBy($"rownum")))
.withColumn("group_rank_of_ID",sum(when($"increase",lit(0)).otherwise(lit(1))).over(Window.orderBy($"rownum")))
.drop($"increase")
.show()
gives:
+------+---+----------------+
|rownum| ID|group_rank_of_ID|
+------+---+----------------+
| 1| 1| 1|
| 2| 2| 1|
| 3| 3| 1|
| 4| 1| 2|
| 5| 2| 2|
| 6| 1| 3|
| 7| 1| 4|
| 8| 2| 4|
+------+---+----------------+
As #Prithvi noted, we can use lead here.
The tricky part is in order to use window function such as lead, we need to at least provide the order.
Consider
val nextID = lag('ID, 1, -1) over Window.orderBy('rownum)
val isNewGroup = 'ID <= nextID cast "integer"
val group_rank_of_ID = sum(isNewGroup) over Window.orderBy('rownum)
/* you can try
df.withColumn("intermediate", nextID).show
// ^^^^^^^-- can be `isNewGroup`, or other vals
*/
df.withColumn("group_rank_of_ID", group_rank_of_ID).show
/* returns
+------+---+----------------+
|rownum| ID|group_rank_of_ID|
+------+---+----------------+
| 1| 1| 0|
| 2| 2| 0|
| 3| 3| 0|
| 4| 1| 1|
| 5| 2| 1|
| 6| 1| 2|
| 7| 1| 3|
| 8| 2| 3|
+------+---+----------------+
*/
df.withColumn("group_rank_of_ID", group_rank_of_ID + 1).show
/* returns
+------+---+----------------+
|rownum| ID|group_rank_of_ID|
+------+---+----------------+
| 1| 1| 1|
| 2| 2| 1|
| 3| 3| 1|
| 4| 1| 2|
| 5| 2| 2|
| 6| 1| 3|
| 7| 1| 4|
| 8| 2| 4|
+------+---+----------------+
*/

Use Iterator to get top k keywords

I am writing a Spark algorithm to get top k keywords for each country, now I already have a Dataframe containing all records and plan to do
df.repartition($"country_id").mapPartition()
to retrieve top k keywords but am confused on how I could write an iterator to get it.
If I am able to write a method or call native method, I can sort in each partition and get top k which seems not to be the correct approach if the input is an iterator.
Anyone has idea on it?
you can achieve this using window functions, let's assume that column _1 is your keyword and _2 is keyword's count. In this case k = 2
scala> df.show()
+---+---+
| _1| _2|
+---+---+
| 1| 3|
| 2| 2|
| 1| 4|
| 1| 1|
| 2| 0|
| 1| 10|
| 2| 5|
+---+---+
scala> df.select('*,row_number().over(Window.orderBy('_2.desc).partitionBy('_1)).as("rn")).where('rn < 3).show()
+---+---+---+
| _1| _2| rn|
+---+---+---+
| 1| 10| 1|
| 1| 4| 2|
| 2| 5| 1|
| 2| 2| 2|
+---+---+---+

Pivot scala dataframe with conditional counting

I would like to aggregate this DataFrame and count the number of observations with a value less than or equal to the "BUCKET" field for each level. For example:
val myDF = Seq(
("foo", 0),
("foo", 0),
("bar", 0),
("foo", 1),
("foo", 1),
("bar", 1),
("foo", 2),
("bar", 2),
("foo", 3),
("bar", 3)).toDF("COL1", "BUCKET")
myDF.show
+----+------+
|COL1|BUCKET|
+----+------+
| foo| 0|
| foo| 0|
| bar| 0|
| foo| 1|
| foo| 1|
| bar| 1|
| foo| 2|
| bar| 2|
| foo| 3|
| bar| 3|
+----+------+
I can count the number of observations matching each bucket value using this code:
myDF.groupBy("COL1").pivot("BUCKET").count.show
+----+---+---+---+---+
|COL1| 0| 1| 2| 3|
+----+---+---+---+---+
| bar| 1| 1| 1| 1|
| foo| 2| 2| 1| 1|
+----+---+---+---+---+
But I want to count the number of rows with a value in the "BUCKET" field which is less than or equal to the final header after pivoting, like this:
+----+---+---+---+---+
|COL1| 0| 1| 2| 3|
+----+---+---+---+---+
| bar| 1| 2| 3| 4|
| foo| 2| 4| 5| 6|
+----+---+---+---+---+
You can achieve this using a window function, as follows:
import org.apache.spark.sql.expressions.Window.partitionBy
import org.apache.spark.sql.functions.first
myDF.
select(
$"COL1",
$"BUCKET",
count($"BUCKET").over(partitionBy($"COL1").orderBy($"BUCKET")).as("ROLLING_COUNT")).
groupBy($"COL1").pivot("BUCKET").agg(first("ROLLING_COUNT")).
show()
+----+---+---+---+---+
|COL1| 0| 1| 2| 3|
+----+---+---+---+---+
| bar| 1| 2| 3| 4|
| foo| 2| 4| 5| 6|
+----+---+---+---+---+
What you are specifying here is that you want to perform a count of your observations, partitioned in windows as determined by a key (COL1 in this case). By specifying an ordering, you are also making the count rolling over the window, thus obtaining the results you want then to be pivoted in your end results.
This is the result of applying the window function:
myDF.
select(
$"COL1",
$"BUCKET",
count($"BUCKET").over(partitionBy($"COL1").orderBy($"BUCKET")).as("ROLLING_COUNT")).
show()
+----+------+-------------+
|COL1|BUCKET|ROLLING_COUNT|
+----+------+-------------+
| bar| 0| 1|
| bar| 1| 2|
| bar| 2| 3|
| bar| 3| 4|
| foo| 0| 2|
| foo| 0| 2|
| foo| 1| 4|
| foo| 1| 4|
| foo| 2| 5|
| foo| 3| 6|
+----+------+-------------+
Finally, by grouping by COL1, pivoting over BUCKET and only getting the first result of the rolling count (anyone would be good as all of them are applied to the whole window), you finally obtain the result you were looking for.
In a way, window functions are very similar to aggregations over groupings, but are more flexible and powerful. This just scratches the surface of window functions and you can dig a little bit deeper by having a look at this introductory reading.
Here's one approach to get the rolling counts by traversing the pivoted BUCKET value columns using foldLeft to aggregate the counts. Note that a tuple of (DataFrame, Int) is used for foldLeft to transform the DataFrame as well as store the count in the previous iteration:
val pivotedDF = myDF.groupBy($"COL1").pivot("BUCKET").count
val buckets = pivotedDF.columns.filter(_ != "COL1")
buckets.drop(1).foldLeft((pivotedDF, buckets.head))( (acc, c) =>
( acc._1.withColumn(c, col(acc._2) + col(c)), c )
)._1.show
// +----+---+---+---+---+
// |COL1| 0| 1| 2| 3|
// +----+---+---+---+---+
// | bar| 1| 2| 3| 4|
// | foo| 2| 4| 5| 6|
// +----+---+---+---+---+