How to sync data between PostgreSQL primary and read-only archive replica - postgresql

I want to setup PostgreSQL databases in a way that the one (primary) server receives data from multiple agents, does some post-processing and regularly syncs to read-only (archive) replica. The sync does not have to be real-time. The replica server is used to feed the processed data to other clients.
The idea is that the replica will keep a complete database in the historical sense but the primary will keep all data from all agents (before some aggregation etc).
The primary server would ideally keep only part of the database e.g. last month.
The more I think about it, the term replica is not correct here.
What I probably need is to setup a procedure (for the aggregation etc.) and as a last step send the resulted data the 'replica' and delete portion of the primary DB.
Is there a better term for my use case?

Related

Insert data into remote DB tables from multiple databases through trigger or replication or foreign data wrapper

I need some advice about the following scenario.
I have multiple embedded systems supporting PostgreSQL database running at different places and we have a server running on CentOS at our premises.
Each system is running at remote location and has multiple tables inside its database. These tables have the same names as the server's table names, but each system has different table name than the other systems, e.g.:
system 1 has tables:
sys1_table1
sys1_table2
system 2 has tables
sys2_table1
sys2_table2
I want to update the tables sys1_table1, sys1_table2, sys2_table1 and sys2_table2 on the server on every insert done on system 1 and system 2.
One solution is to write a trigger on each table, which will run on every insert of both systems' tables and insert the same data on the server's tables. This trigger will also delete the records in the systems after inserting the data into server. The problem with this solution is that if the connection with the server is not established due to network issue than that trigger will not execute or the insert will be wasted. I have checked the following solution for this
Trigger to insert rows in remote database after deletion
The second solution is to replicate tables from system 1 and system 2 to the server's tables. The problem with replication will be that if we delete data from the systems, it'll also delete the records on the server. I could add the alternative trigger on the server's tables which will update on the duplicate table, hence the replicated table can get empty and it'll not effect the data, but it'll make a long tables list if we have more than 200 systems.
The third solution is to write a foreign table using postgres_fdw or dblink and update the data inside the server's tables, but will this effect the data inside the server when we delete the data inside the system's table, right? And what will happen if there is no connectivity with the server?
The forth solution is to write an application in python inside each system which will make a connection to server's database and write the data in real time and if there is no connectivity to the server than it will store the data inside the sys1.table1 or sys2.table2 or whatever the table the data belongs and after the re-connect, the code will send the tables data into server's tables.
Which option will be best according to this scenario? I like the trigger solution best, but is there any way to avoid the data loss in case of dis-connectivity from the server?
I'd go with the fourth solution, or perhaps with the third, as long as it is triggered from outside the database. That way you can easily survive connection loss.
The first solution with triggers has the problems you already detected. It is also a bad idea to start potentially long operations, like data replication across a network of uncertain quality, inside a database transaction. Long transactions mean long locks and inefficient autovacuum.
The second solution may actually also be an option if you you have a recent PostgreSQL versions that supports logical replication. You can use a publication WITH (publish = 'insert,update'), so that DELETE and TRUNCATE are not replicated. Replication can deal well with lost connectivity (for a while), but it is not an option if you want the data at the source to be deleted after they have been replicated.

How to see changes in a postgresql database

My postresql database is updated each night.
At the end of each nightly update, I need to know what data changed.
The update process is complex, taking a couple of hours and requires dozens of scripts, so I don't know if that influences how I could see what data has changed.
The database is around 1 TB in size, so any method that requires starting a temporary database may be very slow.
The database is an AWS instance (RDS). I have automated backups enabled (these are different to RDS snapshots which are user initiated). Is it possible to see the difference between two RDS automated backups?
I do not know if it is possible to see difference between RDS snapshots. But in the past we tested several solutions for similar problem. Maybe you can take some inspiration from it.
Obvious solution is of course auditing system. This way you can see in relatively simply way what was changed. Depending on granularity of your auditing system down to column values. Of course there is impact on your application due auditing triggers and queries into audit tables.
Another possibility is - for tables with primary keys you can store values of primary key and 'xmin' and 'ctid' hidden system columns (https://www.postgresql.org/docs/current/static/ddl-system-columns.html) for each row before updated and compare them with values after update. But this way you can identify only changed / inserted / deleted rows but not changes in different columns.
You can make streaming replica and set replication slots (and to be on the safe side also WAL log archiving ). Then stop replication on replica before updates and compare data after updates using dblink selects. But these queries can be very heavy.

Detecting new data in a replicated MongoDB slave

Background: I have a very specific use case where I have an existing MongoDB that I need to interact with via reads, but I have to ensure that the data can never be modified. However I also need to trigger some form of event when new data comes in so I can do post processing on it.
The current plan is to use replication to get the data onto a slave for the read processing. However for my purposes I only care about new data in various document stores. Part of the issue is that I can not modify the existing MongoDB and not all the data is timestamped, so there is no incremental way to handle this that I can think of.
Question: Is it possible to fire an event from a slave that would tell me I have new data and what it is? I will only have access to the slave DB, as the master will be locked.
I may have some limited ability to change the master DB, but I can not expect to change the document structure at all.
Instead of using a master/slave configuration you could instead use a replica set with a priority 0 secondary (so that it can never become primary).
You can tail the oplog on that secondary looking for insert operations.

MongoDB one way replication

Need some way to push data from clients database to central database.Basically, there are several instances of MongoDB running on remote machines [clients] , and need some method to periodically update central mongo database with newly added and modified documents in clients.it must replicate its records to the single central server
Eg:
If I have 3 mongo instances running on 3 machines each having data of 10GB then after the data migration 4th machine's mongoDB must have 30GB of data. And cenral mongoDB machine must get periodically updated with data of all those 3 machines. But these 3 machines not only get new documents but existing documents in them may get updated. I would like the central mongoDB machine also to get these updations.
Your desired replication strategy is not formally supported by MongoDB.
A MongoDB replica set consists of a single primary with asynchronous replication to one or more secondary servers in the same replica set. You cannot configure a replica set with multiple primaries or replication to a different replica set.
However, there are a few possible approaches for your use case depending on how actively you want to keep your central server up to date and the volume of data/updates you need to manage.
Some general caveats:
Merging data from multiple standalone servers can create unexpected conflicts. For example, unique indexes would not know about documents created on other servers.
Ideally the data you are consolidating will still be separated by a unique database name per origin server so you don't have strange crosstalk between disparate documents that happen to have the same namespace and _id shared by different origin servers.
Approach #1: use mongodump and mongorestore
If you just need to periodically sync content to your central server, one way to do so is using mongodump and mongorestore. You can schedule a periodic mongodump from each of your standalone instances and use mongorestore to import them into the central server.
Caveats:
There is a --db parameter for mongorestore that allows you to restore into a different database from the original name (if needed)
mongorestore only performs inserts into the existing database (i.e. does not perform updates or upserts). If existing data with the same _id already exists on the target database, mongorestore will not replace it.
You can use mongodump options such as --query to be more selective on data to export (for example, only select recent data rather than all)
If you want to limit the amount of data to dump & restore on each run (for example, only exporting "changed" data), you will need to work out how to handle updates and deletions on the central server.
Given the caveats, the simplest use of this approach would be to do a full dump & restore (i.e. using mongorestore --drop) to ensure all changes are copied.
Approach #2: use a tailable cursor with the MongoDB oplog.
If you need more realtime or incremental replication, a possible approach is creating tailable cursors on the MongoDB replication oplog.
This approach is basically "roll your own replication". You would have to write an application which tails the oplog on each of your MongoDB instances and looks for changes of interest to save to your central server. For example, you may only want to replicate changes for selective namespaces (databases or collections).
A related tool that may be of interest is the experimental Mongo Connector from 10gen labs. This is a Python module that provides an interface for tailing the replication oplog.
Caveats:
You have to implement your own code for this, and learn/understand how to work with the oplog documents
There may be an alternative product which better supports your desired replication model "out of the box".
You should be aware that there are only replica set for doing replication there a replicat set always means: one primary, multiple secondary. Write always go to the primary server. Appearently you want multi-master replication which is not supported by MongoDB. So you want to look into a different technology like CouchDB or CouchBase. MongoDB is barrel burst here.
There may be a way since MongoDB 3.6 to achieve your goal: Change Streams.
Change streams allow applications to access real-time data changes without the complexity and risk of tailing the oplog. Applications can use change streams to subscribe to all data changes on a single collection, a database, or an entire deployment, and immediately react to them. Because change streams use the aggregation framework, applications can also filter for specific changes or transform the notifications at will.
There are some configuration options that affect whether you can use Change Streams or not, so please read about them.
Another option is Delayed Replica Set Members.
Because delayed members are a "rolling backup" or a running "historical" snapshot of the data set, they may help you recover from various kinds of human error. For example, a delayed member can make it possible to recover from unsuccessful application upgrades and operator errors including dropped databases and collections.
Hidden Replica Set Members may be another option to consider.
A hidden member maintains a copy of the primary's data set but is invisible to client applications. Hidden members are good for workloads with different usage patterns from the other members in the replica set.
Another option may be to configure a Priority 0 Replica Set Member.
Because delayed members are a "rolling backup" or a running "historical" snapshot of the data set, they may help you recover from various kinds of human error.
I am interested in these options myself, but I haven't decided what approach I will use.

MongoDB sync a specific database

I would like to know if it's possible to sync only 1 MongoDB, instead of all databases inside my server.
Best Regards
I assume you're referring to Replica Sets when you say "sync". In that case, no, it's not possible to replicate only one database, all databases on the server are replicated. This is by design, so that in case of failure of the primary, a secondary can step up and become a primary without any loss of functionality or data (except for whatever data may not have been replicated since when the former primary failed).