I have a workflow where upstream is generating a data and transformer module applies some business logic on it and store the result in table. Now requirement is I need to publish that result into Kafka topic
You can use Debezium to pull CDC logs from a few supported databases into a Kafka topic.
Otherwise, Kafka Connect offers many plugins for different data sources, and Confluent Hub is a sort of index where you can search for those
Otherwise, simply make your data generator into a Kafka producer instead of just a database client
Related
I have a requirement to read messages from a topic, enrich the message based on provided configuration (data required for enrichment is sourced from external systems), and publish the enriched message to an output topic. Messages on both source and output topics should be Avro format.
Is this a good use case for a custom Kafka Connector or should I use Kafka Streams?
Why I am considering Kafka Connect?
Lightweight in terms of code and deployment
Configuration driven
Connection and error handling
Scalability
I like the plugin based approach in Connect. If there is a new type of message that needs to be handled I just deploy a new connector without having to deploy a full scale Java app.
Why I am not sure this is good candidate for Kafka Connect?
Calls to external system
Can Kafka be both source and sink for a connector?
Can we use Avro schemas in connectors?
Performance under load
Cannot do stateful processing (currently there is no requirement)
I have experience with Kafka Streams but not with Connect
Use both?
Use Kafka Connect to source external database into a topic.
Use Kafka Streams to build that topic into a stream/table that can then be manipulated.
Use Kafka Connect to sink back into a database, or other system other than Kafka, as necessary.
Kafka Streams can also be config driven, use plugins (i.e. reflection), is just as scalable, and has no different connection modes (to Kafka). Performance should be the similar. Error handling is really the only complex part. ksqlDB is entirely "config driven" via SQL statements, and can connect to external Connect clusters, or embed its own.
Avro works for both, yes.
Some connectors are temporarily stateful, as they build in-memory batches, such as S3 or JDBC sink connectors
I am using Confluent MongoDB Atlas Source Connector to pull data from MongoDB collection to Kafka. I have noticed that the connector is creating multiple topics in the Kafka Cluster. I need the data to be available on one topic so that the consumer application can consume the data from the topic. How can I do this?
Besides, why the Kafka connector is creating so many topics? isn't is difficult for consumer applications to retrieve the data with that approach?
Kafka Connect creates 3 internal topics for the whole cluster for managing its own workload. You should never need/want external consumers to use these
In addition to that, connectors can create their own topics. Debezium for example creates a "database history topic", and again, this shouldn't be read outside of the Connect framework.
Most connectors only need to create one for the source to pull data into, which is what consumers actually should care about
I have few control M jobs running in production..
first job - to load csv file records and insert to database staging table
Second job - to perform data encrichment for each records in staging table
Third job - to read data from staging table and insert to another table..
Currently we use apache camel to do this.
We have bough confluent kafka license so we want to use kafka..
Design proposal
Create csv kafka source connector to read data from csv and insert to kafka input topic
Create spring cloud kafka stream binder application to read data from input topic, enrich the data and push to output topic
To have kafka sink connector to push data from output topic to database
Problem now in steps two we need to have database connection to enrich the data and when watch video in youtube it said spring cloud kafka stream binder should not have database connection.. so how i should design my flow? What spring technology i should use?
There's nothing preventing you from having a database connection, but if you read the database table into a Kafka stream/table then you can join and enrich data using Kafka Streams joins rather than remote database calls
I need to receive messages to my BigQuery tables and I want to know what is the best way to consume those messages.
My Kafka servers who are at AWS they produce AVRO messages and from what I saw Dataflow needs receive JSON format messages. So I googled and found an article explaining how to receive messages to PubSub, but on PubSub what I only see in this type of architecture, they create a Kafka VM on GCP to produce the messages.
What I need to know is:
It's possible to receive AVRO messages on PubSub from external Kafka Servers and then deserialize the message using my Schema, sending it to Dataflow and finally send it to BigQuery tables?
Or do I need to create a Kafka VM and use it to consume messages from external servers?
This might seem a bit confusing but it is what I am feeling right now. The main goal here is to get messages from Kafka (AVRO format) at AWS and put them on BigQuery tables. If you have any suggestions they are very welcomed
Thanks a lot in advance
The Kafka Connect BigQuery Connector may be exactly what you need. It is a Kafka sink connector that allows you to export messages from Kafka directly to BigQuery. The README page provides detailed configuration instructions, including how to let the connector recognize your Kafka queue and how to enter the information for the destination BigQuery table. This connector should be able to retrieve the AVRO schema automatically from your Kafka project.
I have developed kafka-sink-connector (using confluent-oss-3.2.0-2.11, connect framework) for my data-store (Amppol ADS), which stores data from kafka topics to corresponding tables in my store.
Every thing is working as expected as long as kafka servers and ADS servers are up and running.
Need a help/suggestions about a specific use-case where events are getting ingested in kafka topics and underneath sink component (ADS) is down.
Expectation here is Whenever a sink servers comes up, records that were ingested earlier in kafka topics should be inserted into the tables;
Kindly advise how to handle such a case.
Is there any support available in connect framework for this..? or atleast some references will be a great help.
SinkConnector offsets are maintained in the _consumer_offsets topic on Kafka against your connector name and when SinkConnector restarts it will pick messages from Kafka server from the previous offset it had stored on the _consumer_offsets topic.
So you don't have to worry anything about managing offsets. Its all done by the workers in the Connect framework. In your scenario you go and just restart your sink connector. If the messages are pushed to Kafka by your source connector and are available in the Kafka, sink connector can be started/restarted at any time.