This code in Scheme is used to output a list in which the element of the input lists are repeated n times. I do not understand what is happening in the code.
(define (echo-lots lst n)
(define (helper lst1 n1)
(if (= n1 0)
'()
(cons lst1 (helper lst1 (- n1 1)))))
(if (null? lst)
'()
(append (helper (car lst) n) (echo-lots (cdr lst) n)))
First, note that helper does not use any of the parameters of echo-lots.
That means that you can move the definition outside and figure it out in isolation:
(define (helper lst1 n1)
(if (= n1 0)
'()
(cons lst1 (helper lst1 (- n1 1)))))
> (helper 1 3)
'(1 1 1)
> (helper #f 4)
'(#f #f #f #f)
> (helper '(a b c) 2)
'((a b c) (a b c))
It makes a list whose elements are the first parameter repeated the number of times given by the second parameter.
(It's not difficult to prove this formally, if you're in the mood for that.)
Note also that the first parameter's name is misleading - it does not have to be a list.
Let's improve the naming:
(define (repeat item n)
(if (= n 0)
'()
(cons item (repeat item (- n 1)))))
Now echo-lots is clearer:
(define (echo-lots lst n)
(if (null? lst)
'()
(append (repeat (car lst) n)
(echo-lots (cdr lst) n))))
and it's easier to see that it makes a list of n copies of the first element of lst - (repeat (car lst) n) - and appends that to a list consisting of n copies of each of the remaining elements - (echo-lots (cdr lst) n).
Related
I'm trying to get a list with the average of the following n elements. I'm reading a csv file that has 7 columns im just using the 6th one that has number values in order to get the average.
This is the code
;Function that returns a list containing the values of the desired column
(define (get-column col)
(let loop
([file (cdr(all-rows csv-path read-csv))]
[result empty])
(if (empty? file)
result
(loop (cdr file)
(cond
[(equal? col 1) (append result (list (caar file)))]
[(equal? col 2) (append result (list (string->number(cadar file))))]
[(equal? col 3) (append result (list (string->number(caddar file))))]
[(equal? col 4) (append result (list (string->number(car (cdddar file)))))]
[(equal? col 5) (append result (list (string->number(cadr (cdddar file)))))]
[(equal? col 6) (append result (list (string->number(caddr (cdddar file)))))]
[(equal? col 7) (append result (list (string->number(car (cdddr (cdddar file))))))]
)))))
(define (suma-SMA col n)
(let loop
([n n]
[res 0]
[col col])
(if (zero? n)
res
(loop (sub1 n) (+ res (car col)) (cdr col)))))
(define (get-SMA days)
(let loop
([col (get-column 6)]
[result empty])
(if (empty? col)
result
(loop (cdr col)(append result (list (suma-SMA col days)))))))
Here's a function that does what you asked for in the comments, e.g. given (1 2 3 4) it produces ((1+2)/2 (2+3)/2 (3+4)/2).
(define (sum list)
(cond
((null? list)
'()) ;; error?
((null? (cdr list))
'())
(else
(cons (/ (+ (car list) (cadr list)) 2) (sum (cdr list))))))
I'm still a bit confused because even the combination of get-SMA and suma-SMA does nothing like this. It's completely unclear what the days variable is doing, as you can see I didn't need it in my code above.
So I may have misunderstood what you are trying to do, but the function above does what you actually asked for so hopefully it will be helpful.
Here is the answer that I found useful for my problem.
(define (sum list n)
(cond
((null? list)
'()) ;; error?
((null? (cdr list))
'())
(else
(cons (suma-SMA list n) (sum (cdr list) n)))))
Here is my code? Can anyone tell me how to iterate through a list? if the character in the list is alphabetic, I want to add to a new string
#lang racket
(define (conversion input)
(define s (string))
(let ((char (string->list input)))
(cond
[(char-alphabetic? (first (char)))
(string-append s first)]
[(char-alphabetic? (rest (char)))
(string-append s rest)]))
(display s))
Basic iteration is:
(define (copy-list lst)
(if (null? lst)
'()
(cons (car lst)
(copy-list (cdr lst))))
(copy-list '(1 2 3)) ; ==> (1 2 3)
This one actually makes a shallow copy of your list. Sometimes you iterate with keeping some variables to accumulate stuff:
(define (sum-list lst acc)
(if (null lst)
acc
(sum-list (cdr lst) (+ acc (car lst)))))
(sum-list '(1 2 3)) ; ==> 6
Looking at these you'll see a pattern emerges so we have made stuff like map, foldl, and foldr to abstract the iteration:
(define (copy-list-foldr lst)
(foldr cons '() lst)
(define (copy-list-map lst)
(map values lst))
(define (sum-list-foldl lst)
(foldl + 0 lst))
Looking at your challenge I bet you can fix it with a foldr.
Please, help me with one simple exercise on the Scheme.
Write function, that return count of atoms on the each level in the
list. For example:
(a (b (c (d e (f) k 1 5) e))) –> ((1 1) (2 1) (3 2) (4 5) (5 1))
My Solution:
(define (atom? x)
(and (not (pair? x)) (not (null? x))))
(define (count L)
(cond ((null? L) 0)
((pair? (car L))
(count (cdr L)))
(else
(+ 1 (count (cdr L))))))
(define (fun L level)
(cons
(list level (count L))
(ololo L level)))
(define (ololo L level)
(if (null? L)
'()
(if (atom? (car L))
(ololo (cdr L) level)
(fun (car L) (+ level 1)))))
(fun '(a (b (c (d e (f) k 1 5) e))) 1)
It's work fine, but give not correctly answer for this list:
(a (b (c (d e (f) (k) 1 5) e)))
is:
((1 1) (2 1) (3 2) (4 4) (5 1))
But we assume that 'f' and 'k' on the one level, and answer must be:
((1 1) (2 1) (3 2) (4 4) (5 2))
How should I edit the code to make it work right?
UPD (29.10.12):
My final solution:
(define A '(a (b (c (d e (f) k 1 5) e))))
(define (atom? x)
(and (not (pair? x)) (not (null? x))))
(define (unite L res)
(if (null? L) (reverse res)
(unite (cdr L) (cons (car L) res))))
(define (count-atoms L answ)
(cond ((null? L) answ)
((pair? (car L))
(count-atoms (cdr L) answ))
(else
(count-atoms (cdr L) (+ answ 1)))))
(define (del-atoms L answ)
(cond ((null? L) answ)
((list? (car L))
(begin
(del-atoms (cdr L) (unite (car L) answ))))
(else
(del-atoms (cdr L) answ))))
(define (count L)
(define (countme L level answ)
(if (null? L) (reverse answ)
(countme (del-atoms L '()) (+ level 1) (cons (cons level (cons (count-atoms L 0) '())) answ))))
(countme L 1 '()))
(count A)
What can you say about this?
Do you know what you get if you run this?
(fun '(a (b (c (d e (f) k 1 5) e)) (a (b (c)))) 1)
You get this:
((1 1) (2 1) (3 2) (4 5) (5 1))
The whole extra nested structure that I added on the right has been ignored. Here is why...
Each recursion of your function does two things:
Count all the atoms at the current "level"
Move down the level till you find an s-expression that is a pair (well, not an atom)
Once it finds a nested pair, it calls itself on that. And so on
What happens in oLoLo when fun returns from the first nested pair? Why, it returns! It does not keep going down the list to find another.
Your function will never find more than the first list at any level. And if it did, what would you to do add the count from the first list at that level to the second? You need to think carefully about how you recur completely through a list containing multiple nested lists and about how you could preserve information at each level. There's more than one way to do it, but you haven't hit on any of them yet.
Note that depending on your implementation, the library used here may need to be imported in some other way. It might be painstakingly difficult to find the way it has to be imported and what are the exact names of the functions you want to use. Some would have it as filter and reduce-left instead. require-extension may or may not be Guile-specific, I don't really know.
(require-extension (srfi 1))
(define (count-atoms source-list)
(define (%atom? x) (not (or (pair? x) (null? x))))
(define (%count-atoms source-list level)
(if (not (null? source-list))
(cons (list level (count %atom? source-list))
(%count-atoms (reduce append '()
(filter-map
(lambda (x) (if (%atom? x) '() x))
source-list)) (1+ level))) '()))
(%count-atoms source-list 1))
And, of course, as I mentioned before, it would be best to do this with hash-tables. Doing it with lists may have some didactic effect. But I have a very strong opposition to didactic effects that make you write essentially bad code.
I've a question, how to return a list without the nth element of a given list? E.g., given list: (1 2 3 2 4 6), and given n = 4, in this case the return list should be (1 2 3 4 6).
A simple recursive solution:
(defun remove-nth (n list)
(declare
(type (integer 0) n)
(type list list))
(if (or (zerop n) (null list))
(cdr list)
(cons (car list) (remove-nth (1- n) (cdr list)))))
This will share the common tail, except in the case where the list has n or more elements, in which case it returns a new list with the same elements as the provided one.
Using remove-if:
(defun foo (n list)
(remove-if (constantly t) list :start (1- n) :count 1))
butlast/nthcdr solution (corrected):
(defun foo (n list)
(append (butlast list (1+ (- (length list) n))) (nthcdr n list)))
Or, maybe more readable:
(defun foo (n list)
(append (subseq list 0 (1- n)) (nthcdr n list)))
Using loop:
(defun foo (n list)
(loop for elt in list
for i from 1
unless (= i n) collect elt))
Here's an interesting approach. It replaces the nth element of a list with a new symbol and then removes that symbol from the list. I haven't considered how (in)efficient it is though!
(defun remove-nth (n list)
(remove (setf (nth n list) (gensym)) list))
(loop :for i :in '(1 2 3 2 4 6) ; the list
:for idx :from 0
:unless (= 3 idx) :collect i) ; except idx=3
;; => (1 2 3 4 6)
loop macro can be very useful and effective in terms of generated code by lisp compiler and macro expander.
Test run and apply macroexpand above code snippet.
A slightly more general function:
(defun remove-by-position (pred lst)
(labels ((walk-list (pred lst idx)
(if (null lst)
lst
(if (funcall pred idx)
(walk-list pred (cdr lst) (1+ idx))
(cons (car lst) (walk-list pred (cdr lst) (1+ idx)))))))
(walk-list pred lst 1)))
Which we use to implement desired remove-nth:
(defun remove-nth (n list)
(remove-by-position (lambda (i) (= i n)) list))
And the invocation:
(remove-nth 4 '(1 2 3 2 4 6))
Edit: Applied remarks from Samuel's comment.
A destructive version, the original list will be modified (except when n < 1),
(defun remove-nth (n lst)
(if (< n 1) (cdr lst)
(let* ((p (nthcdr (1- n) lst))
(right (cddr p)))
(when (consp p)
(setcdr p nil))
(nconc lst right))))
That's elisp but I think those are standard lispy functions.
For all you haskellers out there, there is no need to twist your brains :)
(defun take (n l)
(subseq l 0 (min n (length l))))
(defun drop (n l)
(subseq l n))
(defun remove-nth (n l)
(append (take (- n 1) l)
(drop n l)))
My horrible elisp solution:
(defun without-nth (list n)
(defun accum-if (list accum n)
(if (not list)
accum
(accum-if (cdr list) (if (eq n 0) accum (cons (car list) accum))
(- n 1))))
(reverse (accum-if list '() n)))
(without-nth '(1 2 3) 1)
Should be easily portable to Common Lisp.
A much simpler solution will be as follows.
(defun remove-nth (n lst)
(append (subseq lst 0 (- n 1)) (subseq lst n (length lst)))
)
I'm writing a function that takes a list and returns a list of permutations of the argument.
I know how to do it by using a function that removes an element and then recursively use that function to generate all permutations. I now have a problem where I want to use the following function:
(define (insert-everywhere item lst)
(define (helper item L1 L2)
(if (null? L2) (cons (append L1 (cons item '())) '())
(cons (append L1 (cons item L2))
(helper item (append L1 (cons (car L2) '())) (cdr L2)))))
(helper item '() lst))
This function will insert the item into every possible location of the list, like the following:
(insert-everywhere 1 '(a b))
will get:
'((1 a b) (a 1 b) (a b 1))
How would I use this function to get all permutations of a list?
I now have:
(define (permutations lst)
(if (null? lst)
'()
(insert-helper (car lst) (permutations (cdr lst)))))
(define (insert-helper item lst)
(cond ((null? lst) '())
(else (append (insert-everywhere item (car lst))
(insert-helper item (cdr lst))))))
but doing (permutations '(1 2 3)) just returns the empty list '().
First, construct a family of related examples:
(permutations '()) = ???
(permutations '(z)) = ???
(permutations '(y z)) = ???
(permutations '(x y z)) = ???
Figure out how each answer is related to the one before it. That is, how can you calculate each answer given the previous answer (for the tail of the list) and the new element at the head of the list?
Here is a function, that generates all permutations of numbers with size 'size' , that it consisted of the elements in the list 'items'
(define (generate-permutations items size)
(if (zero? size)
'(())
(for/list ([tail (in-list (generate-permutations items (- size 1)))]
#:when #t
[i (in-list items)]
#:unless (member i tail))
(cons i tail))))