My records like this [{ createdAt }, {createdAt}, {createdAt} ]
I need average records per month.
january => 3 records
february => 2 records etc..
You can try to $group by month and year when counting and by month when averaging:
db.collection.aggregate([
{
$group: {
_id: {
month: {
$month: "$createdAt"
},
year: {
$year: "$createdAt"
},
},
count: {
$sum: 1
}
}
},
{
$group: {
_id: {
month: "$_id.month"
},
average: {
$avg: "$count"
}
}
},
{
$project: {
_id: 0,
month: "$_id.month",
average: 1
}
}
])
Link to playground
Not fully clear what you mean by "average records per month" but I think it would be this:
db.collection.aggregate([
{
$group: {
_id: {
$dateTrunc: {
date: "$createdAt",
unit: "month"
}
},
count: { $count: {} }
}
},
{
$group: {
_id: null,
data: { $push: { k: { $toString: { $month: "$_id" } }, v: "$count" } }
}
},
{ $replaceWith: { $arrayToObject: "$data" } }
])
Getting the month name is not so easy, either you use a external library or build your own with $switch
Related
Q1. I need to filter data by created date and driverId then need to sum up the total by Hourly, Weekly, Monthly, and Yearly. I already checked with other solutions but it doesn't help much.
Sample Data:
[
{
id: "1",
created : "2022-01-04T03:22:18.739Z",
completed: "2022-01-06T03:53:28.463Z",
driverId: "B-72653",
total: 15,
},
{
id: "2",
created : "2022-01-01T03:22:18.739Z",
completed: "2022-01-02T03:53:28.463Z",
driverId: "B-72653",
total: 33
},
{
id: "3",
created : "2021-08-26T01:22:18.739Z",
completed: "2021-08-26T09:53:28.463Z",
driverId: "B-72653",
total: 43
},
{
id: "4",
created : "2021-03-26T02:22:18.739Z",
completed: "2021-03-26T07:53:28.463Z",
driverId: "B-73123",
total: 35
},
]
Response needed:
{
Hourly:[10,5,5,6,7,8,4,5,6,3,44,2,1,2,3,44,5,6,75,4,3,2,1], // 24 Hours (Each Hour Total)
Weekly:[10,30,34,45,56,67,78], // 7 days (Each Day Total)
Monthly:[10,30,34,45,56,67,78,55,44,33,22,12], // 12 Months (Each Month Total)
Yearly: [10,30] // Year Total (Each Year Total)
}
Q2. How can we filter nested array by-products > brand id and get the sum of product price by its id and filter by Hourly, Weekly, Monthly, Yearly?.
You can use $group with _id being $hour / $week / $month / $year to aggregate the sum. $push them into an array to get your expected result.
Use $facet to repeat the process for all 4 cases.
db.collection.aggregate([
{
"$facet": {
"Hourly": [
{
$group: {
_id: {
$hour: "$created"
},
total: {
$sum: "$total"
}
}
},
{
$sort: {
_id: 1
}
},
{
$group: {
_id: null,
result: {
$push: {
hour: "$_id",
total: "$total"
}
}
}
}
],
Weekly: [
{
$group: {
_id: {
"$week": "$created"
},
total: {
$sum: "$total"
}
}
},
{
$sort: {
_id: 1
}
},
{
$group: {
_id: null,
result: {
$push: {
week: "$_id",
total: "$total"
}
}
}
}
],
Monthly: [
{
$group: {
_id: {
$month: "$created"
},
total: {
$sum: "$total"
}
}
},
{
$sort: {
_id: 1
}
},
{
$group: {
_id: null,
result: {
$push: {
month: "$_id",
total: "$total"
}
}
}
}
],
Yearly: [
{
$group: {
_id: {
$year: "$created"
},
total: {
$sum: "$total"
}
}
},
{
$sort: {
_id: 1
}
},
{
$group: {
_id: null,
result: {
$push: {
year: "$_id",
total: "$total"
}
}
}
}
]
}
},
{
"$addFields": {
"Hourly": {
"$arrayElemAt": [
"$Hourly",
0
]
},
"Weekly": {
"$arrayElemAt": [
"$Weekly",
0
]
},
"Monthly": {
"$arrayElemAt": [
"$Monthly",
0
]
},
"Yearly": {
"$arrayElemAt": [
"$Yearly",
0
]
}
}
},
{
"$addFields": {
"Hourly": "$Hourly.result",
"Weekly": "$Weekly.result",
"Monthly": "$Monthly.result",
"Yearly": "$Yearly.result"
}
}
])
Here is the Mongo playground for your reference.
let pipeline = [{
$match: {
time: { $gt: 980985600 },
user_id: mongoose.Types.ObjectId("60316a2e7641bd0017ced7b1")
}
},
{
$project: {
newDate: { '$toDate': "$time" },
user_id: '$user_id'
}
},
{
$group: {
_id: { week: { $week: "$newDate" }, year: { $year: "$newDate" }},
count: { $sum: 1 }
}
}]
I am currently trying to perform an aggregate through mongoose to find the average logins per week for a specific user. So far I have been able to get to the total number of logins each week, but was curious if there was a way to find the average of these final groupings within the same function. How would I go about doing this?
Just add one last stage to your query:
{
$group: {
_id: null,
avg: { $avg: "$count" }
}
}
So try this:
let pipeline = [
{
$match: {
time: { $gt: 980985600 },
user_id: mongoose.Types.ObjectId("60316a2e7641bd0017ced7b1")
}
},
{
$project: {
newDate: { '$toDate': "$time" },
user_id: '$user_id'
}
},
{
$group: {
_id: { week: { $week: "$newDate" }, year: { $year: "$newDate" } },
count: { $sum: 1 }
}
},
{
$group: {
_id: null,
avg: { $avg: "$count" }
}
}
];
I have documents like these:
{
"_id" : ObjectId("5cc80389c723e046f504b5a9"),
"adddress" : "string",
"checkIn" : "2019-04-30T08:12:57.909Z"
},
{
"_id" : ObjectId("5cc995f5a6f3eb7c483b019f"),
"adddress" : "string",
"checkIn" : "2019-05-01T12:49:57.561Z"
}
I have tried aggrgation like this:
var start = new Date("2019-04-30T08:12:57.909Z");
var end = new Date("2019-05-01T12:49:57.561Z");
var pipeline = [
{
$match: {
checkIn: {
$gte: start,
$lte: end
}
}
},
{
$group: {
_id: {
year: {
$year: "$checkIn"
},
month: {
$month: "$checkIn"
},
day: {
$dayOfYear: "$checkIn"
}
},
count: {
$sum: 1
}
}
}];
db.collections.aggregate(pipeline).toArray()
Is it possible to count them by checkIn date and get result like this:
"_id": [{
"checkIn": "2019-03-15T00:00:00Z",
"count": 4
}, {
"checkIn": "2019-04-30T00:00:00Z",
"count": 1
}, {
"checkIn": "2019-05-10T00:00:00Z",
"count": 1
}],
The result is shown the total number of the day.
{$project: {
checkIn: { $dateToString: { format: '%Y-%m-%d', date: '$checkIn' } }
}},
{$group: {
_id: '$checkIn',
checkIn: {$first: '$checkIn'},
count: {$sum: 1}
}},
{$sort: {checkIn: 1}}
Try this: I have tested this query and its working.
db.sample.aggregate([{
$addFields: {
date: {
$dateFromString: {
dateString: "$checkIn"
}
}
}
},{
$match: {
date: {
$gte: start,
$lte: end
}
}
},
{
$addFields: {
dateString: {
$dateToString: {
format: "%Y-%m-%d",
date: "$date"
}
}
}
},
{
$group: {
_id: "$dateString",
count: {
$sum: 1
}
}
}
]);
I am trying to get the sum of count which I get from group, match. How can I get the same.
I have this code...
VisitorCompany.aggregate(
[
{
$match: {
$and:[
{ entry_date: { $gt: start, $lt: end } }
]
}
},
{
$group:
{
_id:
{
day: { $dayOfMonth: "$entry_date" },
month: { $month: "$entry_date" },
year: { $year: "$entry_date" }
},
count: { $sum:1 },
entry_date: { $first: "$entry_date" }
}
},
{
$project:
{
entry_date:
{
$dateToString: { format: "%Y-%m-%d", date: "$entry_date" }
},
count: 1,
_id: 0
}
},
{ $sort : { entry_date : -1 } },
])
and the output is ...
{
"count": 2,
"entry_date": "2018-12-12"
},
{
"count": 1
"entry_date": "2018-12-11"
}
Is anyone have idea that how to get sum of count i.e. 3 (2+1), means total number of records before group. thanks in advance.
Below modified query of yours will be giving you the sum of count, I have just added the
$group:{_id:"", sum:{$sum: "$count"}}}
to the existing aggregation pipeline query
Modified query
VisitorCompany.aggregate(
[
{
$match: {
$and:[
{ entry_date: { $gt: start, $lt: end } }
]
}
},
{
$group:
{
_id:
{
day: { $dayOfMonth: "$entry_date" },
month: { $month: "$entry_date" },
year: { $year: "$entry_date" }
},
count: { $sum:1 },
entry_date: { $first: "$entry_date" }
}
},
{
$project:
{
entry_date:
{
$dateToString: { format: "%Y-%m-%d", date: "$entry_date" }
},
count: 1,
_id: 0
}
},
{ $sort : { entry_date : -1 } },
{$group:{_id:"", sum:{$sum: "$count"}}}
])
The result
{ "_id" : "", "sum" : 3 }
My code is:
db.essays.aggregate({
$match: {
essayId: 3
},
$group: {
_id: {
year: {
$year: '$essayTime'
},
month: {
$month: '$essayTime'
},
day: {
$dayOfMonth: '$essayTime'
}
},
count: {
$sum: 1
}
}
});
It returns an error: "exception: A pipeline stage specification object must contain exactly one field."
However, if I do it without the $match, then it returns as expected. What am I doing wrong?
Put each pipeline stage into its own object within an array:
db.essays.aggregate([
{ $match: {
essayId: 3
}},
{ $group: {
_id: {
year: {
$year: '$essayTime'
},
month: {
$month: '$essayTime'
},
day: {
$dayOfMonth: '$essayTime'
}
},
count: {
$sum: 1
}
}}
]);