Why JSON convert.deserializeobject. With ExpandoObject truncate string to 32745 chars? - type-conversion

I have problems when an json attribute contain how value one document on base64. Document data is truncated to 32745 characters.
I have this code, but the value for documentPDF was modified because max body question is limited to 30000 chars:
strResponse = '{
"NameFlow": "Certificates",
"MessageDate": "2023-02-02 10:14:24",
"Pagination": {
"Pages": 1,
"ActualPage": 1,
"Quantity": 1
},
"Certificates": [
{
"Type": "DRFI",
"Number": "SV-000014-23",
"Date": "2023-01-31",
"TypeId": "CC",
"Id": "9999900000",
"DRFI": "SV-000014-23",
"DocumentPDF": "JVBERi0xLjcNCiW1tbW1DQoxIDAgb2JqDQo8PC9UeXBlL0NhdGFsb2cvUGFnZXMgMiAwIFIvTGFuZyhlbi1VUykgL1N0cnVjdFRyZWVSb290IDExIDAgUi9NYXJrSW5mbzw8L01hcmtlZCB0cnVlPj4vTWV0YWRhdGEgMjIgMCBSL1ZpZXdlclByZWZlcmVuY2VzIDIzIDAgUj4+DQplbmRvYmoNCjIgMCBvYmoNCjw8L1R5cGUvUGFnZXMvQ291bnQgMS9LaWRzWyAzIDAgUl0gPj4NCmVuZG9iag0KMyAwIG9iag0KPDwvVHlwZS9QYWdlL1BhcmVudCAyIDAgUi9SZXNvdXJjZXM8PC9Gb250PDwvRjEgNSAwIFI+Pi9FeHRHU3RhdGU8PC9HUzcgNyAwIFIvR1M4IDggMCBSPj4vWE9iamVjdDw8L0ltYWdlOSA5IDAgUj4+L1Byb2NTZXRbL1BERi9UZXh0L0ltYWdlQi9JbWFnZUMvSW1hZ2VJXSA+Pi9NZWRpYUJveFsgMCAwIDM2MCAzNjBdIC9Db250ZW50cyA0IDAgUi9Hcm91cDw8L1R5cGUvR3JvdXAvUy9UcmFuc3BhcmVuY3kvQ1MvRGV2aWNlUkdCPj4vVGFicy9TL1N0cnVjdFBhcmVudHMgMD4+DQplbmRvYmoNCjQgMCBvYmoNCjw8L0ZpbHRlci9GbGF0ZURlY29kZS9MZW5ndGggMTc5Pj4NCnN0cmVhbQ0KeJxNjksLwjAQhO+B/Ic5qoc02yR9QOmhD0sFQTHgQTyI1J6qqP8fTGrFLuxhdmdnPwQ7ZFmwLdsKMs9RVCWenEkhfRkVaUio6NuvjrPjCnfOCstZsCYQCalhb5yR80kQlE5FAtJGSIIdnK05xOjfLhP9qJJJNZydFlieYTec1S5wzxnqbQnMmOjPRErEYzAZKGVEGCGURuh0xjXNPYrfGcyPrp6mHS59l6J64PfuA8N1M1UNCmVuZHN0cmVhbQ0KZW5kb2JqDQo1IDAgb2JqDQo8PC9UeXBlL0ZvbnQvU3VidHlwZS9UcnVlVHlwZS9OYW1lL0YxL0Jhc2VGb250L0JDREVFRStDYWxpYnJpL0VuY29kaW5nL1dpbkFuc2lFbmNvZGluZy9Gb250RGVzY3JpcHRvciA2IDAgUi9GaXJzdENoYXIgMzIvTGFzdENoYXIgMzIvV2lkdGhzIDIwIDAgUj4+DQplbmRvYmoNCjYgMCBvYmoNCjw8L1R5cGUvRm9udERlc2NyaXB0b3IvRm9udE5hbWUvQkNERUVFK0NhbGlicmkvRmxhZ3MgMzIvSXRhbGljQW5nbGUgMC9Bc2NlbnQgNzUwL0Rlc2NlbnQgLTI1MC9DYXBIZWlnaHQgNzUwL0F2Z1dpZHRoIDUyMS9NYXhXaWR0aCAxNzQzL0ZvbnRXZWlnaHQgNDAwL1hIZWlnaHQgMjUwL1N0ZW1WIDUyL0ZvbnRCQm94WyAtNTAzIC0yNTAgMTI0MCA3NTBdIC9Gb250RmlsZTIgMjEgMCBSPj4NCmVuZG9iag0KNyAwIG9iag0KPDwvVHlwZS9FeHRHU3RhdGUvQk0vTm9ybWFsL2NhIDE+Pg0KZW5kb2JqDQo4IDAgb2JqDQo8PC9UeXBlL0V4dEdTdGF0ZS9CTS9Ob3JtYWwvQ0EgMT4+DQplbmRvYmoNCjkgMCBvYmoNCjw8L1R5cGUvWE9iamVjdC9TdWJ0eXBlL0ltYWdlL1dpZHRoIDI4Ny9IZWlnaHQgMTc2L0NvbG9yU3BhY2UvRGV2aWNlUkdCL0JpdHNQZXJDb21wb25lbnQgOC9GaWx0ZXIvRENURGVjb2RlL0ludGVycG9sYXRlIHRydWUvTGVuZ3RoIDEzMTk1Pj4NCnN0cmVhbQ0K/9j/4AAQSkZJRgABAQEAeAB4AAD/4QBaRXhpZgAATU0AKgAAAAgABQMBAAUAAAABAAAASgMDAAEAAAABAAAAAFEQAAEAAAABAQAAAFERAAQAAAABAAASdFESAAQAAAABAAASdAAAAAAAAYagAACxj//wBVMWhvaZqn9oJ88DwPsSTazA/KwyOR34II9vxqSwvjeCVvKWOFZGjVt33trEHjAx09TXO3Fr9ssVVdEi2RSpNGq3TR/vF+5nCg4zxjn0xxSnTbu9tJbe40xZbW5XbcQrcFFY7idy/xAk4yM4/LkFodCbkprKWjqvlSwGSNuc5VgGB/B0x/wKr3lLXLT6XLc301xLo8UrSxhNskyMh2kEZUr/spzz90fjozTag1qsSWUsW3H+qmQFgB90E9O3PpnpT0E7muI0p3lrWCmoarDJslsvNXhV+YKeOpLZ2tkZOABjpUsGtTzH59Mni/u+ZJH864yGGGOBweuDx06UXSFqbIjWlwtUFvrpv+YfL/AN/E/wDiqPtt3/0DJf8Av5H/APFU+ZDszQppamgb0/u0EUrsR4r42mvdc8ZNpyJ91vKhVug7bif1z6V0Ol+B9JbRorS4t98XDMysUeUjPLMu1ivJwD2xW9rOiW6a6upp/rrlfKb6AZY/iFA/Gp9Qe/isd+m28E9xxtjmkKLjvyAe3tXymf5hVhUjhqMuVvVu9vTXodtKNo83c5s2l14MmhltZLm70GRxHNbyMZJLMk4EiE8smSNwOSOo7ir3i6y0+506B9QSeWKOdGW1hAJuXPCRkHqNxBxkDjngGl07xLK+opp2r6fLpt7L/qdzh4ZsdQjjjPfBANUPHmsroH9k6k8XmpBPIyx84aQxOqcjp1bntXj4eNSrjaUauknvJPdd9Ovn+pslLmstzjfEenf2hHdzQ6R9k1K2VJLq3kxmWHkrKoTKs2MruBHyhs9AR3HwrMr+FNz7tqzOq7vTg/zz+dc/p/iVPFGo6bqKxeRcLp9xDcRq2fuvFjn0ILfmRXonhDTItJ0NLSHdsWR2Xd1ILHB6Dt7V91SkuZ0b35bfcY4mLjaTVr9PNGsDs+9/wKqttH50DI9aEifxLWZZh/L+R/8AgNbHMmV5rd619MH+gr9T/Oo5trp/tVNp/wDx6/8AAj/OtKS94U3oeYeHB+4f8P5V6BpjbNJR/wC6pb8jXn/h354Jf97+mP6V6Dov/INT8f51D3NJbEEutOke/wCwzsyxuzL027c8HI74H5inLr1usbs+xWVQ23zAcgnGR7DvWrtoAoM9DFvfElvahm2eam75WWRcP8u75STgnjAHc1Xl8WW0Dyo1vL+6k2N8y/0WhWtry4hglluNPnXqzM00ZOM5x97gDp+FWINWuptzppN15P8LeZFlvp8/AFNvPNm2Spvba33Y8YYEHjkjI6dceoq19uXzFt4omeX+JV+6n1NMd9bFxT/wGnE00tVC91ax0+Pfd3EUSf3pGA/nQXYuyoksbIy7lZcFexB7Vxd9bvoc+x97WX/LObrs/2W9PY1W1b4o6Pa7ktN90/wDs8L+Z/oDVTwbrl34pk1WW4f8Aeq0e1f4FHzfLj0/xrix2Bp4uHLP5Psb0KrpPyLN9aWmq23lzxLNF95W7g+qkcg+4rGn0C0T5brVNUljb/l2ku2IbPYAAMfzrTvbBN7bLSKKVfvKqlP0BAqtpul6hcz7HSK1i4+aBf3r85+91HQV41HJcRTdvaWj5f1oej9eio6XOh8JWcRu/OMSxrAmyCFekY6H/AIFj9DXaiuF8S3D+HPCkt3aP5VwrR7f++xx+IzWfonxYsbrZFqMTWr/xSL8yf4j6YP1r6LDUY0IKENjy60pVJczPSWNVbP8A1FV7HW9P1NN9ldxS/wC6wz+I6iprL/UVq3dmaVkSzFtjf7tN0s/6Cv8AvN/6EaLo/uG/3aTSf+Qen+83/oRq6fxA/hPPfBY/cXX/AF2/pXc6V/x6f8CNcX4O2eXe/wDXbb+QFdhZRvNpsqI+12Z1Vv7pPes2WzXppC1Q+w3Hzf6W/wDqvL+8evZvrTTY3Xnt/pTeUY9m3c2enDZz1zn8D7UGdl3NABKiFla/8+8X/fArMm0/UPLaKK92fuztYsSVbYR+WSDnPai2sNShnt3+3b4o2bcrZJcFieTnsu3HXofWgdvM0vsFp/z6wf8AfsVFcQ2FtA9xLbxBFXLbYc8fQDNPNzN/z4z/APfSf/FVXvTLeWktu1jeKkilWZWizg9erUCJJLPT0jZ3t4NqruZmjHSqqR6LM8UP2KLdKu5VNv255ORx0PWqkmnQzO80umXjStGYmbzk+YEbT8u/bnA9KfFa+S0WzTLzbEfMX/UAZznswxj0GBQVY1Do+mf9A+1/78r/AIUh0bTP+fG3/wC/Ypg1C6/6BN5/31D/APF0yabULzTrtbe3lsbryysLTtGRuOcH5Wfpx1HfoelMnUlGiaZ/z4wf9+xSNo2n+XtS0iX/AIDise603xG+37PdxRN5JX5pt2G+br+7G7OU54xt6Hu+4tvEs89u6S21ui7FkVZiwGGyx+58+5cAcrtPPNMDNstMtP7dvbe3i8hYMMsa52NwN2VGM9RyKv3Wl6e8eyW02twyr5jENgg5XnHofWqnhyHVtNmu01R/7TvVWP8AeQqqlsqobGdvAbd1P0x0F7UL6b90j6TeKrZ/ihPvjG/HX+nFSZL3U9THs7XT7rzUtE3RLMVbzGkHOBkHJBJyev8AhT5dI8Pf6qW0afzcNtVpDuK4YfxYyODxVAaX9tk8r+ybqdILk3O2TyG+9uBAzKMHDNz9Kbq2h6nc/aHi0y8bzZBJ9nZYPLzjad374buOfqBQJXtdGjPpFjcyReVFL5UWNytcSdBzz83IOR6npUlpp9j88SJP5qrt+W4kAXPQfexnB6VUsLDWLadHu0upbeKGONY/LiG0qMMdwckg578DFaKwagk7ukV18zbm+VMqTxxlyP0oC007ofbaDb7P3XmrFG3l+Wtw+zjqfve+OOlVtPgt0tLfe8/zZjbddSDdjuTnpgD049a24priFPKTTJ1i/wB5c/X71ZOmzpDpXnfYrrd5RbzPl+XI3cZbgcn0z70A01JGlJoyTJs39Rx90cknP8kO5bt4Hufuf9885/8A1e9dp4VheGf5/vcr/u+31rz208KXbyfP9s3rn5up+YYOeCDnOff35rv/AAzY31l5UTpL5S/Lubrjpz70Cex2rN8lUC6JHU97Mlta/PXN6jeSv+6t9u9v4v7tU3Yzirl66vok/jrZ0xvM0+Fv7y5rldL0T51md2d/4WkbJ+vtXYWq7LaNfRaujqxT0R438KNM+2+AvNR/uzOv4ZyMe4yfzNd1YPs/dO/3awfgYf8Aihm/6+XrvrjSra5m85lZXxyytjP4dM+9L2V9UPns7MqmV/L3/e/2qT7c9XBpUX/MYha8dVdOZhbzqXV7GgppXEV7hFAmvSIiWpiFh0sq7dwUZa9dydZpDS9d3cab5TNLHWX2XQj47PShHe1AQt5P6Lh3lBGVpHXwm8rVT6dxoaRNy7CJnN1PEfUtkknUyMcFBsz5oCsYFrUq8gikVrgg8u1E2jrMdVh7P3Z1oc5rm7uLtnXFB9y6tpWnRku0oKXztR3zouSjWoyE8jwYeOjqC0KzqHVaG9rVPlBglDLvQ1Yw9hPdJpbdB7L/1Nc0dtTUierAU7FV88zD3j2BhxT8CPTZYw2Z/46iwxT9K+MuEv4z8BuE3YufzFI7FFkG3o9aPQIwTU83cnM6aKpr0dnV3z6j2PefeX+PDWZoDzKoOxwXwctNnj0O50QK1cI8Ot9fXiX6wULWoa8weW1+DcykbRJGx4Ti0EBdtASWqtDrivKFSPfZanV+TcCN0tNeEawLiodWLarTzag+zMf6hYUMOtanPEQ8qqOlI9A/Ugg/Oujl7i6A49I1NryaPG0k8rIYmyWhFz+v9yKqv9dIemY6zTC8Ls5s8jYj5upxGDWZ3NJOJYanZlnhzOC4fDeJbaEu+iDn6bGNNDXVeS22JFsCz7WELepTTYyqjFTA7yBor+oLvLeiqKPqoaGZqF5vmX4vQKTqttWREdjg+e2wd3m5U3wKPv0RWNokgaIm2sYe8RjFyK+YdIaGr+1b/yb4ehtgh3n5i/zH3LhxUVtNxvCM8O5DX33S8N15zd3SY4v92BZovU/wR1pxKdr14K4DFhtP2m7dSvCr94zqVSQGNucYd4/x4gyjZArjoqDg+Pm9DjSiFLk/RYtkPFuI9ConXtNZ4h32YTPFoihazI7zw2GTzkWSVAC6D2fl0h8BQRKzFXlnsDrdgZ8oiYkW8HV67f6hffGiVRwvUYpGOHAtsf+w6cWja673VC7DZ0WBVbUdVh7ii1tdFpy36pPDSwDFN4lxwbB40JIYTbp/ira3x1uJqyqdW+3xunEawtwn3VH+deBVMofFMmaVdVeo6xBZnuKnUuMNGvJia6hr9PrxBwiIC0eyLPuqix4a5Ozr8HWHt3FahMJrPwbEbKwjfrQF/XaO4QjeJG3SjVrcK3dVmR7TmrvTjLDfCrc0lJg6hb4H4qO8QF/S5tQHMhKMjscNb2oEQPBdvD11O/cxavKrEG8mrLXWdGylMwliRqkFDVDAuWxSkIyB6syTQOdeYfdSjfS8LUGGT1ip6Nq06PEUW0c6TEMsDYSW1BJli8HzarGoZp1SRPRbTG8Sucova3rAyozq6PFr9saKqWy4YVYNHe4dEz9eRt418D81xY05/0I+XgzpyuvKU8gQrYR7lySi/w0qUt1hIeRP8OviNKL8GfhX8Cvhl8EvgF8EPgx8CPwh+gIWYTns8OX9xtP9xlSGRmrW688hK8f+KHug/glYt092CRVrZA27QaXxqvO3z34VuPm4OpbBabzeawuayW1WH8DayZLcLMnMRa2BK2VEstRd5CfDYhNR+lEF40fbTUMtYKrGBtbBVbja9W6JXRlMhbrqVXsTX4WstOZuvYKWw92xD9XKN51iNnnZZeC2xkp2JlTmOna0oyeTaxs0c6TshWNUnDUEB02o1rZk4c+KmzgVt958xurJcsRjjRayINx6qnH7i8AXrgxWnN56Q2K98AM7hlbj936o+jX23WTuHrcU8xxaNw7boFIG/2Gmz8wm2aKC2dfFvg4ksmISYG3TgwwsnS8eJzQ7GBcbl2JzesU4xddiOIrzswXxps6bNWWdAK2huOVrSRUWPRBvMjpgJY49tGZ0jp/YSNCi3KoY4kyk1M8uZVlg81G9KpChqSMxITcm0G7NHDi3NjPdlZVp1KlcXpPRyxMXFmZLzJww5FDZZTDodPtQzTJY4bEqLadPgij421WQ2xyW4sePGKI8r6wwOlsWK2SwxK5G4tOL7eTU2VR4/O2h3eJakxam54ZTlA6+2tqkro3ukVNsjCEpaIErSCqXkhltSllsHXt2iFYzuh1JtP/Do2/5/tR0GD1HWpfkcKTZDQd3wUbNL070j55cNmJZrtKUnJ6fbDWfljs7NKvLYrL0G5mSNzVc+sMbrEHhGFgwomLxoeNXKyYGcHJ6vN+lUVWfSH56en+8tKvdnVRX7AsUiHrcoz/AX9W6Wx6rEiHf0TmdY5ROD1nTznj7Le9ucvVqdK4+u6Jd7ErVRxvcx72k5mv+/WMfBIq7SKur4i4rOqDdZbE6HLcPrT9HbaTBpfn+qq1+OPynBl2LUcd1LDleCUW/QW1y5mYdvw7B0YmyKywob7clNNelMhoRUpnBz9zf8N/p5uEP2ZdliHPfos90T7VXo+Dt70d979dlBLY2Opr+zt0c3i9Wc6LQnHX+/etAo7jcZiUYHNzn9GW6/05QQl5br8fR14UXa1+PJTYvjq0xWsausJnW3NdGqN1gd1u9LfQG3xeIO+Hx5aRZLWp6I8/u79/O7dfO1HpbQezlFaWBe5lRK77XY+6G/ixg6a98j38r3CmcQXpfosn1Pj073UYt+qNOXGm1uZ4rbbuAOQ1JWhrs3InBcSlZmRk5qXFxqTkZmVkocLxYXChUfSrfVbtbrLTbrQW9mH5fF4uqTmZmbZjan5aLP56hNylX6VT1n1Z0z2j4as/rcQG1W3UEtLWb1uYHHzGq0P8bjPClOZZPBnpqY6LIZUs3JvlS8Q+L44S3H+Apz1M1yWvnzUh0ecKzPbmfMjp+JZ+lm6ybhvm9jqbjz9GEFbAgrY6PZZHYim88W4qfnNexUPkF7gyyd0twyo6Vk7frh63Nb2/q3eWsbshpMYyZYJ7Bgha7CXliUXNSyvq1hQkVRUcWEhrb1LcaM6jmujHErVk9aPWrdxqqNAxcvHbw0fda8XvMSp81MmakMHWEYYe6Xn5C/euPSeTNH5OePmDlv6cbVxpymBb1zWMFzBc85UksLyHD3fG7gj39wUSPx76khTmPJP9a/YA5zFaT/vV3Ultnfu7ho0MA+UU6KcmqUZb7xuPTxfHy+MeXYdPZx7cvnqa8UFhUVXiI+/jJowKABWf/T3nfANXW1D9+bhD0VUUSQi6iAhnATQFDqiBAgyjIMxR2SAJEsk7BstYAL9yiKoyq4rROp1daFonW2WletVnFvnHWv/znn3oSA2Ne+v1+/vu/7JY8kZzzn2ed5zuWGK2y9C+WB1/ogLjeIIYLvb93hAGOsEfftBjKYx2uPc4ODufgBOPluMHx/DrFLYYs5F7yRoPfu16Agbi3o4GWgkQqpfQ7e8J28wJC3MaA1hySDGQSN9M4KNG7BZb8Fk8Ec0Hj/HpvOOMastbjFsLSuhpethj4Wjg2HsVgZ0Bp+jcqHtIUfmE/INsb4LZxWdsy2frDVVtdMZ6EzPfTW8ZzroLe/x0KawjQ97xo3XTMmfZnC9HH54LjrEuRiuExh1lo5t3Z1aeNodRu3cWrp5NzS0Qb/HcetnN3AqJNVW5eoVkRrZ8tDzJNWzV1bN+9j62Jvw7hqAU4d4Nxhwej1dgcTXHoyWZYs0K4xjp9xdwUkmr19zHBo7u5kaWHfzKHBk5zsoSXaoLe0NBJY6f0PVjMYpNVTcAVvXQlSUGAQyWV6u3pHMXLfTrZ6mgHW7P7PALzovwJ++XuAkfYX4MY/Dcw5//vA8voPhPl/Am/MYIb/DbCIawCr/oPgpRnM8L8NVlH/NsSbwQxmMIMZzGCGT4KTZjCDGcxgBjOYwQz/Y3DZDGYwgxnMYAYzmMEMZjCDGcxgBjOYwQxmMIMZzGAGM5jhfwAem8EM//8C+lu0AEY7jP4/7RnOaISJ/m7PEfVgm4E5sjbRbSbWnrWLbrNMcCwwN9YVum1pMm6F5bJe0W1rrJPFGLptgxFWxXTbllFuxLfDUq2W0m17rJPVC7rt4GhpbZDTEesDcOi/p8OtW/rRbRyzakXSbQZm5VZIt5mYm9tEus0ywbHA7N2W0G1Lk3ErLNxtLd22xlxbBtJtG8zZ7QbdtsUTjfh2WGe3Z3TbHnNt7U23HayYrbvQbUesA8BhYjjLBgjX3EJDtyk7U23KzlSbsjPVZpngUHam2pYm45SdqTZlZ6pN2ZlqU3am2pSdqTZlZ6rt4OhGdKXblJ3XYATGw0iMi4WBVhx6QpcWU2M68JOB6cFYBHqyGfV8MzEYkYOWCuOAGT6mAEBgIjCWiWWBOR3qycCnDGDngncpwHTAYkArHYzIsDyAkQCoyQCNZKwAtQgsFlAuAHRzEEcFaGUiSQjwo0bPBtMaeRBGmUksCLQ6GnuhGBvxFwMKGoBLAL5iwAfSkGDZNG4f0MsCo3A2B8inM+qTjJ5QpkMSfEyeDGQHAusN+ulgBo6KkRUa6kjRUdOaEohLDpiVIH0N1s0Da7VoJAdgSZHVCDCehcbiMCGQCVpHjtapkF3D0XoZwpBhSsATWlmK3glaIgMugcZ1yKdyIIvBe/V6wHk9kEIOVuqAFSKQNnKkidyohxj8KMEKSkJKHzHiQdC+lgOKkKoY4EFaBaCXB1p65Af47Lt00FYgmbTIFlBf+Gy9TNpSFFU90oniqUIaSZCkKsRFh/wkRF7JACNi9Gw3LdKRQJ+UL+RIJ8oWOhQVOkBVTMcr9JiGHjdwUQI6CmQfDS2lCowoEVeKpg5Zql4CyFGDdDE8+4+yLSW7AkUNjIQsOnKhVPA5d/D5gXrUUyFfG+KashnFhfKjitZLjWybjjDrJTbVCFotH62jtM4GfQ7au6be9EXUlIhCAbJDDr1LTe1tiD4VHclQf8ovWhQNhhiVIV/DyNUYtaFkzKRxdKA3iqauB1pQHso1ekmMYgTuAGUDvQyZRwIkESP+Epo/B2WXTOQrOPNhvur2gdapdOQYIr8LoMIDmePjka5HPKUoEiGXbKMP6nfmh3kyk45rjREbRi7lcRXAl6HY+X+Tb23NGfe/JuPGAkkkmB/aZf70PIFFo6hQI8n0AGC+6oYFApAi28KVyg+ih0PHXCBoF6AYykRRBH1TAEbhE04pGxuoUjQVSAYoQQaSlspzFK2mYlSH4lyDdKesYFgHvZqGeFCZpgBZmrKM3uhtA7YhL0jo3A13ORvZAOJp6KgwzdMaZFcVnR8oKjK6L6ZzsgxlFDnSkJIuHclh8HJjj+npFVT8aD8YyTDqwP6kTEBVBSmyqZ6uPtT+pPiyjXwaa0Bl0Tz6SalZH7FZHq2pHO00BdpT1M7/0PZwDVVZ/AC+f4MIbpo6JcO/a1vT/UFVd4Kuz3rkOUmDOtlYg/qq2FiucJMYgJpQulCnBUOu1BpPHlJUe1Uoj4g/qikVe+IGUUXlAzX9TmlFtXPQfqHykxTVMTmdWyg6EFOBsv/HY5TK4iraM/XUDTtEbnKqyEL5Tk7bGWZ1B5QvZbQOhhOGwcoNo5qNPCNGbSlmOF81znONd4Jfo7wgQ3k6D50o5Mj70KtiMAYtlAkwDHOBNM1hjXKnP71767NF/WnAIM1fqU6fWA0Ij0Y0Yg00CE9jNMMnEVN+MkQNdTpR0FWkPrr/rMIZovLjVQ56LtG4c3QmZxHK31QUyGheVMZW0X5nI521dPUxnCuoc1Em7WdDHFNxpaHPOxQHNTp3i5GehkgRY/VVvnE++xt8YbSQGOkO7Sanc72U3qsS+qytQrKa1kw5Oo3rUGzSMn7ct6Cd1LDOA2/7m9hIanKFYLofPpkeVn9VY8BuOruxG2U3g+0br1agqwJ5I70NctWfwep3TX0lMviQjRmuzuBVmKEvM4kQDbr+UqB4yzKpsJTU6UgWGV2pcoy+NM0llA8DaY/r0C5RGGUw7OuGsfTpVjWt8JSWppWmYUzXWyIP2VH5b/rRUA1y0NUlZRmZiQRS9A551ttlBMCQmNQO/Z/kYyrzS5EGhorXrUEWp05juajd1KlbhWqEocqYXp8Z6kRTOaXhKh3KFZSv0mm9m6654o94VGvUXoeiVIWoU7vowyvffzcCDPUtBhOg2QQsCvT6g2opQiNCMEaALCoCM6mgFwlGI8GIL8BIoud9kaf6ozoUA/BSUI2jaIjAezzop6EcF4URqA97fQF+PKAF1wqwAYiHAFBLQpgiRDsOjMaCTwGNB1dEgJEU0IftaJQFKX7xYBV1DSGkayIlaTIYJ4waNpRKiDgaJIsDPRGgH0PP8gFtIaIH5Yf8o1A73ihnFC0pH9kIUoY0I4BEsagHR1PAZyLAS0L8+UhnStp4pEMUmKd0ESAJIGcOrSuFB+2TSs9AH0H5YgHUa8VHNohB0tTbLwJ8JgLJIf1oMJuMKkQCWBmJNE1C1hPQNoPaxqJevVaUpyKQNtCq0AaRoB0HfqKNthOhd0oWkQm1hrbrj+brsSj9+PR7BLJcAupR3ohAvWTkKzjLpn0pQno05tofRaIAYfGRxknGCIlC0UtJb4hOikeCiSQUP+hbU1kMUU38yR6hqBjmU2hPf2gXaHU+sgmUK8nI+WOUwd5cQ/BIbhgRJ5do1Tp1hp6IUGs1aq1YL1erOARfoSBE8swsvY4QyXQyba5MynGIkaVrZXlEgkamSi7QyIhYcYE6R08o1JlyCSFRawq0cAUBKZNBREf4EcomRGKFJouIEaskakk2GO2jzlIRMTlSHeSTnCXXEQpTOhlqLdFbnq6QS8QKguYIcNSAKaFT52glMgKKmyfWyogclVSmJfRZMiJOmEzEyiUylU4WTuhkMkKmTJdJpTIpoaBGCalMJ9HKNVA9xEMq04vlCh0nQqyQp2vlkIeYUKoBQcBHrNIBKlp5BpEhVsoVBUSeXJ9F6HLS9QoZoVUDvnJVJhAKoOplSrBSJQUG0KpkWh2HEOqJDJlYn6OV6QitDGgh1wMeEh2b0CnFwK4SsQa04RJljkIv1wCSqhylTAswdTI9IqAjNFo18AaUFlBXKNR5RBYwLiFXasQSPSFXEXpoayAZWAJ0VAFe6gwiXZ6JCFOM9LJ8PVgsz5ZxCFpNXx2hFKsKCEkOcCklNzSfChhZKwa6aOU6aFGZWEnkaCAbQDETjOjkowC6Xg0UyoUqiQngACXFCwaPJEusBYLJtByRLDNHIdYa46qbgXU3GA8hqcBE0AVdOLygBqbXa8VSmVKszYZ6IJcaIzMTWFwDhyVqoL5KLtNxYnMkfmKdP/AiEa1Vq/VZer1G1y0wUKqW6DhKw0oOWBCoL9CoM7ViTVZBoDgdxBlEBZiKHIlYl6FWAYMDrHpmuhyNRiEHgQPnOESaOgdYrIDIASGkh8EKh6EhJMC1ehmbkMp1GhDAlEM1WjmYlQAUGfgUAzfKtEq5Xg/IpRcgrQzhCEwF4katNTQyIAf2h7qDOJDmSPRsGI65YC0brjEwAP7Jy5JLskwkywNM5SqJIgfEfr30ahWIFD+5P7UtTNABhT+TltpFINaB33V6rVxCBaSBAYpDA61wZAE/OeAC9gRMJVq4c6TqPJVCLZY2tJ6YMhWILKAOcB9s5Og1IAtIZVBNiJMlU2gaWhTkJRC7FDp0iBztkyx5ulwP85NDMhA5Qw13CxSZNjWbSBfrgKxqlTFTGJzgR8eCTMXJk2fLNTKpXMxRazMDYS8QYA6jc4o/cC8KC7QHIJmmk2BTyesEjRELMU5CM49QA52gacBeUoDEhszdME1CUzZIlA4OidA5OrR5gN7ABDKwCgQ2sIyUTWRoQdKDWwRsxEygM7QxsBXwKFhOqNNBslNBo4hRojbE2adrAQUS63RqiVwM4wPsM5CyVHoxlU/lCmAZP0ixgbZEEp2pT/ojiaQoG1J+aBIP5Vk4bBJubDrcoPSGaYUcxCnFG9LSUpUKcECbCGrIhrlcngE/ZcggmhygkC4LbVhAOj0Hbl4dHKSjBGgYCBTXyWCKVmvkVEb9qKjUhgcsqU1DWxoJkZelVv6JjnAb5GhVQBgZIiBVgxyKZBkhk+gNAVYfxyD4pXK08bpRIQ7SWK7MpOCq1Hq4ZahkLqe3MRUp9JQuC9aDdFmDnSs2UVQL2ev0IJjkwEXGyvNnBoD7LUZAJCVEJffniwSEMIlIFCWkCiMFkYQvPwn0fdlEf2FyTEJKMgEwRPz45DQiIYrgx6cRfYXxkWxCMCBRJEhKIhJEhDAuMVYoAGPC+IjYlEhhfDTRG6yLTwB1XQh2IiCanEBAhjQpoSAJEosTiCJiQJffWxgrTE5jE1HC5HhIMwoQ5ROJfFGyMCIlli8iElNEiQlJAsA+EpCNF8ZHiQAXQZwgPhmU3HgwRghSQYdIiuHHxiJW/BQgvQjJF5GQmCYSRsckEzEJsZECMNhbACTj944VUKyAUhGxfGEcm4jkx/GjBWhVAqAiQmi0dP1jBGgI8OODfxHJwoR4qEZEQnyyCHTZQEtRsnFpf2GSgE3wRcIkaJAoUQIgD80JViQgImBdvICiAk1NNPAIQIH9lCRBvSyRAn4soJUEF5sicxzMtwXMtwX+gm3NtwX+vtsCtujHfGvgv/PWAOU98+0B8+0B8+0B8+2BxtncfIug4S0Cg3XMtwnMtwnMtwn+424TgL1J/a0Bhr13wyZgTb0Y9DfyMdwPfLLRN/v/7BXJLLO3xwEOnvyp+A4OCL/wU/GdnBD+uk/Fd3ZG+Gc/Fb9ZM4jPYH0qvosLwAefGPwLBRbCh2stgEsw3B1zwKdi7sw+WAeAwQPj3Rrh9jDBdQW4PgCXAzA+g9Qb4Rab4LYCuB0BLg9g8MF4n0a4R01wWwNcf4AbAjAEYDy+IS7AqMdtA3DZALcrwOgDxpMa4SpNcD0BbiDA7Q4wEsB4GowXa2vc2ramZgV4zZ9vbYFbW1lb55eAV74lE7dkXSqEL2sct2ahViFWyGTi1hbl5eXWNri13Z7CPYVLAZQCKAFgY4HbAAoGEizc0mJTNVxng+M2NAmKhg2kYWOL29hXg1dFr4pesxFMBWBridtas1gs/dRx48ZN1VuxcCuaTKEtzrC1MNIpZLFwW8uZ4GVrh9s6VA+vHg6ols8iZhGTAYwDYGeJw//GsUlidjjDzkCMpmaHqNk54HZO1W7VbuV+5X4zY2bGQHXGW4+3Lra2t8LtbRjg1S2qGLyiulmzcGtLmmChPc6wtyxsSNLeCpK0d8TtnS95XPJ4+Nlx9lnFWcXB2KNH9009MLXGvsbewRp3sGWCV3hmDXxlhiNDnr1UTb0cGAwHy2rjC6uutrDEHayPwheKbEPcw33PkCpUmXSbo6PaqbDN14rT2QRfq1SxiYgCrYJNRMvU2ehdC961MtCGv2VmE7FiveqvYSMZcCQH+PFcAj5bUCJ5lpHFnl9Z2nSaEDPhuQNuxSgv9hwHhgoZOM61I20sLTo7MhnuFhgptrTtbImz8OJQBs4qTyL7kWyTEY+lbQs9wEaDkIDOQ2p0hQLPzz0gkN4mxFgtljFHrz2d/G3qa6/dc8M3rpL0S20/urzYLYUsZtWQxcy15UwGzmC4BAERf8wv7ILnuMu1SOAfSQejtLgFkCsPiclMYVm6MFKSuC5kM9ixdrHtL9ZlyVWZerWK60w6wkErFyuRTKpUq6TctqQHHLF1cW3y1i7Xm/SC80wXt/r5ZLlSFpCkFys1RGIEn2zbyoHbhexKhnJDQ8JCggaCbphJlyyq+lskcyDt4LydCysuIVHE9SU7UN22qgi5Bt7yiUwSEIKk+G5RIbywgKDQ0NCAMH5oF24H0ofSyKNJjZKoG2dkMd7O1MK4BcYsxp0wMG7LKAbZeb2dT5vVh0v8WnS5WpM1xHKcXw5/YvPVX68JZgyvWB/1na3DuhUnHaIEtzYu9niiG/pe/ea7eQFznrXxKXnWr+rmwv6pb+OOLA35/rr4SGYLRqvIF5Nco8sDbGdgG49MrO4jPRS26/LUzndqJgR917nafdNL3wWWpCasdofLvsJjfYbPG3n1co1668xu0Vec7dZqSwaPaR/heOabVd7BJefW5c28ftnpi69aTfCZ1vrkgZE/rni2KZG9ZODRgZvwA6XF+/DXrgzZPdWuVljARItZk4dOC51qs2RXxiWV8vSl8j7nL5YuHjX6t5YZ1XinwATfVwOvv3jkedeR9Sxb0LbF6Grp3PPHv38f9fOI3TovBhPso2XFuA2wiAXpCUzq6chqyWpxavcz3qYSrtON1qWPeuzmvhrEcLJBMeTpw3IjWxa28Al+8ZsoSmNb1+t17uuqzptqQqqcyGSI4MWKI/uSwvLocsGECPpem0SraHSDVpMth6OB9K1OXaDRjdCLyIkgKjkAhRxgaQ02poWFFY6zYsk+ZIyhTzImfEYzyMvLa4qBTPsnlPWkC5S3A8uetDWQZFo32pBMGCXzBmG/P1gWM+VaYtfM0vbV6hm7etV2XcmOm8RendaDZzvi6JvBrVjzyIQT7+2Xjr/YYS+rm/Xz+Gt41UVVhCz+UneOQOOfcyJBntAyv+rnz3s8aL0urnJDDk/U3qJs5tmYc7ciX88Ut0wb+lNl55Q5S0SD91STvlb3z8T6FlTVPO8T4tA6bhl3/+8n3dtN87UJ7hX68+IYj8k5kyMWnfVP/nZ1qKLF4oP5iq2tv5mYvyxUuguffe9Cry+HNXNOLrUYeO7LKr++zRcHF08J9Bse6vwo0/1Use58Le91bdCyq71CvHeEDuJlqY+c7XwLF0tmlZXcuPNwE2Pjy+eD39QW1QSP+bbfhTZe90T3XpHFljhIY7dN0ti+25NejCpKvP0epbF9plazA2lszN+SLPzIjtSm9zKdl8qIJHkmutEJHAu/4cJF2SyUDONyeSSAYCqb1XdJ/d8iHz3P/Mj8v8xGJZO3ta+xmrGgsMD1Tcfhb7Ql7Fd/LCsrmRu1ddmRYZMCuwVx2s7Kf/XFGq9ifMuoI+47mIej7u6f//w1y/PxeNv37VQVjzO77/d1u+7n9ZRVypfcu/qD69Q6lwUhF8M0yerwe+sFNqRwz64Z5Hz7I7mHnuvmtMz7Zcr20gPW44m6tqtDHo3ce0mP9Z184vdZd8/kv5v2av3wku47v/fakF62e/+4ypkbzmzsfDL5dci5n0bOvtH2/b2R2Ue+tM7VX3LuF3PqEXYwJnaZVcj1NIe3X3x98MbAq+Ofnlng5DV95bVxrfacObzEEz/wNmaVy+ygMu8Y3ou97Zdim3clHR6r8h9U9CBMVfhk+z0Xu7uGbFQILPIFlW46wHRjrMyx1rhxpzJN0tWRM+njjg3veud95t7BJw5uX7u1xmUeKYLTzVggFy2PJgWNK00wyYNdC5fOvCCS5PI6S8LI4PQQmTgguGt6cEAwLygsICyoCy9AGhbCzRDzeCHBGZIGKTBGJb2eaHGy+JtWoaHttihXH85hzPl4CmwyQ6k1OpQFQbiAOAZRDAIYxu8w+BZAhgaQYSgFik1SYAoJTismKVDwLxkYsuCfsNCT9lBwcMHynsUgsUbbmVnMwDHLll7n++9NPOiTsLRf/q91L97+tPN09aOXbVLrkg7Koy1O7zty78qb+YPmDGsW5ldtIXC5tKCgZEfG2vPb7zJSfLZ298nnKze8eIQNLJ0/2eOozZzjCzwiyTUrWh74IXrQ087BU5bMGBBaE++xsd1h55/OFjuvCXm4od3BGe1XFk2p9fW4luE5qQfnfX9m3B7V2HLe3W+rAhNTh1hWuk496CnZqrO/emZUR6dOcwWreGN7zO3RX5jnM+ldpfOBydetXfvt7zyQO6jriLmrl5dkz/VTP9q34c5OQauj6fFFW5Ldo6fPW6GsVvn++MLX62Adscau8tHPdgtKr4xYJB9b0eVXJfFu/On3NdvKuti8695iz7wWa6onHH1QvGdtSvsIty0x4/MnHH95YlHP1r+1mHRz2pKs9iVZ4WsOFMZ3vGntHSt5+/VXrnFBW1KHJ/za5/uw6e85FyqHLY/IPpR/rHJ79oyxionab+6seL3kgvuZrm+kh5Q9rK9/MbZy/Y5lP3x+bG7q8lEDjjSPTj/h/eDNZ/u4ds8De0hXhKqHJ/bcGjkzodxuyq4xA54dyJwoPr943r6DU4+ooy9Xc0rrKp9tIpX3RghX356be3Cn9b534U836EItN6cea31q+9PSwxM9HheOwBO+a1Okqzo5qF3PbgPcakvuZ+4Trgr8vcOU7kOP3wuOnOW5Y5Z9bnGPB/vOBlSwGNNjXj64wDjGXAqKgBUoAg+oImArbpkVjHK/R+Mj7DCUTm1tZnec9NVjthRv3ZIJopHbmmzVYNDGGKwgDDtTebN9fd4UqdUgeYLQlWfIJWK9jODn6LPUWrm+ACZ3MpQMJoO4vJAgsitI7jwu6gaRsPvPnaH/VX5fUqGorD0fM7vTF9mc1pd3Xrm6f34/n8T1P19wi2/vdP+XVb/ErteTRLO7VqeT57gKS9v0nr1h3mCy4zks+9bnO+9NsnJ67sia93DSUa8jQe0nLnr8R6YH+83nN0s879yMX1axxyfp8LRXgmM2x4duPL6pN2vpy5WKrzJ/9fs9KmnThOPX/aI4vusmJKSI7K8x2a9HzJxJqiY+SSMXvRpzpqzqlnfZmBcnXJ5Yb01Sir4VzFwSg/WJzmjm65+xuuzaScuiPktfjlvVLLqFTfGScXUp+e/wBZ6J1uMxZzKqbutFn6jt+wKSl2xsm8/n5h1dWBs+9qsKMWOLp0Plm+cLN+M/t+ub/P6lRc1ews6Q39cCi6winYwZx4Jkgg+TfN7k6RKmb08nFgvE3wTS2dKGrgmuOBzByKJ5VG4umkkWTSts4biueHivVN+y6x1c3nS6bJs0J+3a8grJcvHfHp7FzgXrW1b0KV+xPlY34A8rF46MTKSKgpAEdag8opw/oeenn4uN0/AbjzCVo4KQbFIQYsgoMtKkIIT9lTMx1COCovqJ52Fga+eyyTWDmZFdLtz+dn3e+Z8L+sXhlRz9yEFKe5e1P+/6fMY2zqnmS6cq07f1ZxyJJ1wS518Y1etK/+0bByzwuOyJT1i3Pf/xlOP3wvH7V3bNsLU4OC3mysMk1wsJa2dfuzltxOnCPTdKH1sGjmfentWpfTvN62dvruXP5zg8t7qi2eEWv2h6tq12zraKrl9nBuzv53gnfXDPlvOmED2vWLnzXh7l9snldu+stTt4R9P9/Xhbl9q9tuLpD3/d1upu/JQv94d0Hrps990do+16f34qSet9nzy8PV82eBDeyraF44lzLeY9/ez7jAFVAYE3X46fcLRf6q1FmlLFuq6xp54V7P7GbVS6/4OlC/2DLfPc0w91b6v0Kn5od4C9/VhE1fWX90Zvubp8tT5kW/z+kT7NO+bafSaaOnJgVESLHVVVm+IyDy7p/b6wwLtwsSuZcat386HuBxe38z4ecbvz7e1/xBxlnzrLK4zt2Cmm/bCBd1IfrLw4f9HhbuqdRb56y2b3c713Lyze45v8XeWI7pMqcsXfqipcVu7+Jvphc/XbyTzF5ne1/Q5O9TmUsXOR58TmUkb3gI1pM7Zd876+ZdNhybf5yRan+JzEdaWbVuSvrSqfm+P+2+yJLjntAnmrrVXlg6Z22F3+YNxh7zN32yYcWnBfeOk5LlNPsht9UH7whurOqrKfuf7vHfcPGnw2rk3F2VeBi3tyUlpmH3JZ9pYsthpFFlukG0qB48wTqBQwG18GFJX8LamYR5LUhvT/lA1Zf0XABWUjjEeGdKWKRhfU5ZKw+49fsRQzPqwdDFg7GKB2gD239uErrbMHZ/1Z1TfFznHBPzz+boD3kt5tOmXfHpj4zTbLMHeW8Icva+zbXgjN/rH5WbuHYXvnW2462PU03oLb++QkhwLpxDGlw9srNi4Wfn07a+iJ2oVJm23ZNRt/W9N5wyibjb/OTTs83N3idkbuLZ6oY/PAm2utE49VRW4dcnYfh5mzNuvJEeWTboMrWv4R9cOlMOk6lTQkf2W5xCngZK+vXly9aOVwenDBCqH/TYdd5S55u0q7P3h9tfNAZ6+4VL+lo7SXmnfbKhx6tq4uYtbY3z7f/PmENr/1qJw65NakhHHujysC067NDA/YEDRg/9Ye73gnq5jdKzdvnB025sSiQvbT+NRZ3iEdarqqpF8m/fC10/rWPuOO/PEDc8K058MeHhftnlo6cUe1t77DMDe/7476+oV1mNe1T5djX1TO3uDhs2pNxj2x14jLfsJFw0qudBhy0rtvD9G+Lf17tmc+/GXUoMDTPlc1Q5z6ReVVvcAu71jHKB52vtq1amebUyl9b3atcLrtI9zhti3yC8G1PTXaUZe0N9vX7o6av//BXo/+58dOuxcnJFetnV57b9CSjW8ubMq4sqes6PO6M3V9bwr9V7n4rVw1OrPwxuT0/GGbA8f92v/rwbvz/Pwe1Slr/GawZ/QKTdhzeXzkpH02sftPrYgI1M95rnqRTwxguwwZPmdBj4Sgcec2lbS6uDj+j7mbdkSVK+aduHSmZKqxdtaB2nm7ifJXXzybvC5pbVzQgsGyb2uLJaEbvREYv2Fd/aAom17xaAO6MbgzI75vYRF/+c6qA9xffCYFkwOp4gZ/hZpQHlfed4LwL/3SB+xbsGvBZjVelAwjg4bxeKjMDTUpcyIykYw3KXO9P63M/Ql9PVm0BApPsIrKyKJSsmiW0UgcJlk0luxpYMfAWwb9q8ss+FcIQDO5UqwtkGh0nCy9kuxlJMAgg9vyCE8sFoMPPoH31Iehe+rUdzAKQE9HfztEZvyODIfwbOpCLPPxhBXzLiUXuHNOntVntltoN7fZZcns+b3njj5RYD9zj2wYh93jRY32F+XYd7t63rI9HL47es2yJ/Lzkt3tQlaUDZGNmzl6SlRiyln72V+ccO/r8eSz3lNExze9zb7aw4rjv/BG9zYrTm3xzCvteuW29FBk9/xRPk9cRq+cqR877Y8jHRlRnfZOdt6+fI2F/cK6rFdZnDnlnXp2yh4glHjZyFUD5829NvaP6hlPojpffBN+fGfIA1WHDdc3+tYdv/DEceN8v7J5cY7d7R5bTzrjVcNzu/Jwf8DPgxZ/K+xq+6Pt3h/Xb7i++bfzriX9BAPCeCN93b+s/MP3xUV2N0I+b3PapCyVetVWfU0vC8uVeCe/HsU9XeIy7Kqr4p5envGlh9p1tGBV7vVenWTLaoaI0ifUeEq6lE2oPffkxeOWFQt8L/+0ouz4/SES/tVBVl9P7GGZZ/mLZWWOV4tdYvGWh7//2Ia1q5Z/wNHv/kVZ4L2yZxWD557FzlRE7Ux7UrbCpm+M8/xCr+OY//7KhSt6CvLahvx4YunSJaNGtXsVM8dr7eton8Kni1/szt7at+zK3Zx893t3QucXuPV9f6bKJyvnxsZXb6bctSu8Iw/f+IasY8VOr63NUUpmdf9lUWp8wu7C/u0q8pvxvEc94NtW9ny9+ujyIXsqShb2H5kaHyOo7n1oYe4g28KY7LcFS/bsVCpHHBLpXBxGJf7ELWZtIotZ6xg4ThbN+acLV9O/Dqy/OVJetA8mHzqIbZhce9M7L0CK+p4d15E0nXUlfeoXsrggtb0tjVw1/fGjM0XNa/13KmeO++6u+0VSarLEnptKJpd3KvRr8qu7yR8+TaWiY2H7j+7sZONfERGNajOrGMeSoqevHPvdYvVAX8vz3KGiwO1V/ax6ch09R23Ii04evDs02CnU+WRSRvsUy3OiWa635i1oKdcOYm+ousbxd+7gGGX7Wj5xdrTix9nSvuf3TmbVZj3gTvj14reH18+qm7ay35fq/DU4a8fbHVu/P3i77u3+idi5m9sXSZedCD+gODDs9e3XP7geLwtT1HW2fPwgemKz/OOe7/uH/3RlQNvUWwdKrJvvXamY//X119X+sheffcZcF/NtO/4o71U7brQ4OjPi9aA2dQm5bvxv3q6JcZocnrJtxN4dK3kXJM67ugyYbsHp6TFzyNJpN2+5T7pVOu+ngmc97npkFzuOwA/vSO2YtdzBq7Zj8tm+7EHekyuKGX7geNK+3keW3GKGKxhqhkJz+j92Id70nTaTmBxCupmGpF39HUMcMDfOWHCd0C+Ou3BDeFz4GvhBREbcHhe+ONHvwN2OU11Vp6qzPBd+V9DokgnGCjfe5UvGpP5Mj7Q+Zfq7tmP7+Ae5+x8Y8uTc1cf3v1hbutDnFi+z+V37K+dOT4vvMKLjstoFhUPnB5zoMlTWYs1vVzeOaam8w291XH/hvfqBTUXvxY/7jPyyk2jgYq/7jKoAYWmk96n7L+2sxHdTCsZYF4wp07gMK5cN8rPwyjiw+WDGolP3xRf5udFb3148d/1t8bvrkrRjP1zdXOYg33di5JxHT3Mjv7+0r+CXdz8v32a3hGuRdD122/bvvVKGVDwZd3v2xWk7NtkV3XVZ1KPLiOyvjw7h/3J7+enzy6punTtvP9plwNne7FOq7b/6h4+729uheqxVv8vdnqxNi908ORd/sHGv/+OcFZO5XX+fFon9H5Hg2m4NCmVuZHN0cmVhbQ0KZW5kb2JqDQoyMiAwIG9iag0KPDwvVHlwZS9NZXRhZGF0YS9TdWJ0eXBlL1hNTC9MZW5ndGggMzA4Mz4+DQpzdHJlYW0NCjw/eHBhY2tldCBiZWdpbj0i77u/IiBpZD0iVzVNME1wQ2VoaUh6cmVTek5UY3prYzlkIj8+PHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iMy4xLTcwMSI+CjxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CjxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiICB4bWxuczpwZGY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vcGRmLzEuMy8iPgo8cGRmOlByb2R1Y2VyPk1pY3Jvc29mdMKuIFdvcmQgZm9yIE1pY3Jvc29mdCAzNjU8L3BkZjpQcm9kdWNlcj48L3JkZjpEZXNjcmlwdGlvbj4KPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIgIHhtbG5zOmRjPSJodHRwOi8vcHVybC5vcmcvZGMvZWxlbWVudHMvMS4xLyI+CjxkYzpjcmVhdG9yPjxyZGY6U2VxPjxyZGY6bGk+TWFzIENhczwvcmRmOmxpPjwvcmRmOlNlcT48L2RjOmNyZWF0b3I+PC9yZGY6RGVzY3JpcHRpb24+CjxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiICB4bWxuczp4bXA9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8iPgo8eG1wOkNyZWF0b3JUb29sPk1pY3Jvc29mdMKuIFdvcmQgZm9yIE1pY3Jvc29mdCAzNjU8L3htcDpDcmVhdG9yVG9vbD48eG1wOkNyZWF0ZURhdGU+MjAyMS0xMS0wNFQxNzoxNTo1MC0wNTowMDwveG1wOkNyZWF0ZURhdGU+PHhtcDpNb2RpZnlEYXRlPjIwMjEtMTEtMDRUMTc6MTU6NTAtMDU6MDA8L3htcDpNb2RpZnlEYXRlPjwvcmRmOkRlc2NyaXB0aW9uPgo8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIiAgeG1sbnM6eG1wTU09Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9tbS8iPgo8eG1wTU06RG9jdW1lbnRJRD51dWlkOjg4OEM4MEU2LUYxQzAtNEVCRS1BODAxLTU0OEVDRTAyMUE3NDwveG1wTU06RG9jdW1lbnRJRD48eG1wTU06SW5zdGFuY2VJRD51dWlkOjg4OEM4MEU2LUYxQzAtNEVCRS1BODAxLTU0OEVDRTAyMUE3NDwveG1wTU06SW5zdGFuY2VJRD48L3JkZjpEZXNjcmlwdGlvbj4KCjwvcmRmOlJERj48L3g6eG1wbWV0YT48P3hwYWNrZXQgZW5kPSJ3Ij8+DQplbmRzdHJlYW0NCmVuZG9iag0KMjMgMCBvYmoNCjw8L0Rpc3BsYXlEb2NUaXRsZSB0cnVlPj4NCmVuZG9iag0KMjQgMCBvYmoNCjw8L1R5cGUvWFJlZi9TaXplIDI0L1dbIDEgNCAyXSAvUm9vdCAxIDAgUi9JbmZvIDEwIDAgUi9JRFs8RTY4MDhDODhDMEYxQkU0RUE4MDE1NDhFQ0UwMjFBNzQ+PEU2ODA4Qzg4QzBGMUJFNEVBODAxNTQ4RUNFMDIxQTc0Pl0gL0ZpbHRlci9GbGF0ZURlY29kZS9MZW5ndGggOTQ+Pg0Kc3RyZWFtDQp4nGNgAIL//xmBpCADA4haBqHugSnG/2CK6Q+YYl4MplgmQajjEAoiZ2kFVAbUJ8TADKFYIBQrhGKDUEwQCqqSHajPyhvGYwTyrJ+BDbNhBFMdkmBqSjkDAwAdOg1mDQplbmRzdHJlYW0NCmVuZG9iag0KeHJlZg0KMCAyNQ0KMDAwMDAwMDAxMSA2NTUzNSBmDQowMDAwMDAwMDE3IDAwMDAwIG4NCjAwMDAwMDAxNjYgMDAwMDAgbg0KMDAwMDAwMDIyMiAwMDAwMCBuDQowMDAwMDAwNTExIDAwMDAwIG4NCjAwMDAwMDA3NjQgMDAwMDAgbg0KMDAwMDAwMDkzMSAwMDAwMCBuDQowMDAwMDAxMTcwIDAwMDAwIG4NCjAwMDAwMDEyMjMgMDAwMDAgbg0KMDAwMDAwMTI3NiAwMDAwMCBuDQowMDAwMDE0NjUwIDAwMDAwIG4NCjAwMDAwMDAwMTIgNjU1MzUgZg0KMDAwMDAwMDAxMyA2NTUzNSBmDQowMDAwMDAwMDE0IDY1NTM1IGYNCjAwMDAwMDAwMTUgNjU1MzUgZg0KMDAwMDAwMDAxNiA2NTUzNSBmDQowMDAwMDAwMDE3IDY1NTM1IGYNCjAwMDAwMDAwMTggNjU1MzUgZg0KMDAwMDAwMDAxOSA2NTUzNSBmDQowMDAwMDAwMDAwIDY1NTM1IGYNCjAwMDAwMTUzMzQgMDAwMDAgbg0KMDAwMDAxNTM2MSAwMDAwMCBuDQowMDAwMDM0ODQxIDAwMDAwIG4NCjAwMDAwMzgwMDcgMDAwMDAgbg0KMDAwMDAzODA1MiAwMDAwMCBuDQp0cmFpbGVyDQo8PC9TaXplIDI1L1Jvb3QgMSAwIFIvSW5mbyAxMCAwIFIvSURbPEU2ODA4Qzg4QzBGMUJFNEVBODAxNTQ4RUNFMDIxQTc0PjxFNjgwOEM4OEMwRjFCRTRFQTgwMTU0OEVDRTAyMUE3ND5dID4+DQpzdGFydHhyZWYNCjM4MzQ2DQolJUVPRg0KeHJlZg0KMCAwDQp0cmFpbGVyDQo8PC9TaXplIDI1L1Jvb3QgMSAwIFIvSW5mbyAxMCAwIFIvSURbPEU2ODA4Qzg4QzBGMUJFNEVBODAxNTQ4RUNFMDIxQTc0PjxFNjgwOEM4OEMwRjFCRTRFQTgwMTU0OEVDRTAyMUE3ND5dIC9QcmV2IDM4MzQ2L1hSZWZTdG0gMzgwNTI+Pg0Kc3RhcnR4cmVmDQozOTAwMw0KJSVFT0Y="
}]}';
dynamic objObject = new ExpandoObject();
objObject = JsonConvert.DeserializeObject(strResponse);
I Need data document complete for next visualizations.

Related

MongoDb Aggregation separated array based on condition

I'm very new to mongodb. I'm trying to do an aggregation pipeline for lookup kinda like SQL left join. Given the following document's schema:
Mongo playground: https://mongoplayground.net/p/yAIwH5V2yv8
Characters:
{
"_id": 1,
"account_id": 1,
"world_id": 0,
"name": "hello"
}
Inventories:
{
"_id": 7,
"character_id": 2,
"type": "EQUIPPED"
}
Items:
{
"_id": 1,
"inventory_id": 7
}
I want to query for characters and look up inventories as well as items in inventories. I was able to achieve this however I would like to separate the inventories field in characters result document.
Current result:
{
"_id": 2,
"account_id": 1,
"world_id": 0,
"name": "hello",
"inventories: [
{
"_id": 1,
"character_id": "2",
"type": "EQUIPPED",
"items: [...]
}
]
}
What I want is based on the type of inventory I want it to be a separate field of the resulted character document something like this:
{
"_id": 2,
"account_id": 1,
"world_id": 0,
"name": "hello",
"equippedInventory: {
"_id": 1,
"character_id": "2",
"type": "EQUIPPED",
"items: [...]
},
"equipInventory: {
"_id": 2,
"character_id": "2",
"type": "EQUIP",
"items: [...]
},
}
Also, is my pipeline the best way to achieve this?

Pyspark: Best way to set json strings in dataframe column

I need to create couple of columns in Dataframe where I want to parse and store the json string. Here is one json which I need to store in one column. Other json are also similar.Can you please help in how to transform and store this json string in the column. The values section needs to be filled from the values from other dataframe columns within the same data frame.
{
"name": "",
"headers": [
{
"name": "A",
"dataType": "number"
},
{
"name": "B",
"dataType": "string"
},
{
"name": "C",
"dataType": "string"
}
],
"values": [
[
2,
"some value",
"some value"
]
]
}

Parsing Really Messy Nested JSON Strings

I have a series of deeply nested json strings in a pyspark dataframe column. I need to explode and filter based on the contents of these strings and would like to add them as columns. I've tried defining the StructTypes but each time it continues to return an empty DF.
Tried using json_tuples to parse but there are no common keys to rejoin the dataframes and the row numbers dont match up? I think it might have to do with some null fields
The sub field can be nullable
Sample JSON
{
"TIME": "datatime",
"SID": "yjhrtr",
"ID": {
"Source": "Person",
"AuthIFO": {
"Prov": "Abc",
"IOI": "123",
"DETAILS": {
"Id": "12345",
"SId": "ABCDE"
}
}
},
"Content": {
"User1": "AB878A",
"UserInfo": "False",
"D": "ghgf64G",
"T": "yjuyjtyfrZ6",
"Tname": "WE ARE THE WORLD",
"ST": null,
"TID": "BPV 1431: 1",
"src": "test",
"OT": "test2",
"OA": "test3",
"OP": "test34
},
"Test": false
}

How to import these file in mongodb

How to import these file in mongodb, here is my json file
[{
"_id": ObjectId(),
"title": "How long running and abdominal excersises?",
"author": {
"userid": ObjectId(),
"name": "clark Loews",
},
"postdatetime": Date(),
},
{
"_id": ObjectId(),
"title": "How long will it take me to lose 15-20 pounds with running and abdominal excersises?",
"author": {
"userid": ObjectId(),
"name": "Bart Loews",
},
"postdatetime": Date(),
}
]
It give me this error:-Failed: error unmarshaling bytes on document #0: expected 1 argument to ObjectId constructor, but 0 received
Hmm... You'll need actual data to import. Having the ObjectId() and Date() functions in a json file will not work. How would the userid fields actually match anything in your database?
Note that you can skip the _id field when importing and MongoDB will create unique values for you, but the other fields in your document will need to be explicit.

Local database integer data getting string when i push it to algolia

Records i'm pushing to algolia are showing as string however it's an integer in my local database.
Well you didn't put any code so I assume your error is here : Algolia is schemaless. You have to do it like said in this page :
{
"objectID": 42, // record identifier
"title": "Breaking Bad", // string attribute
"episodes": [ // array of strings attribute
"Crazy Handful of Nothin'",
"Gray Matter"
],
"like_count": 978, // integer attribute
"avg_rating": 1.23456, // float attribute
"featured": true, // boolean attribute
"actors": [ // nested objects attribute
{
"name": "Walter White",
"portrayed_by": "Bryan Cranston"
},
{
"name": "Skyler White",
"portrayed_by": "Anna Gunn"
}
]
}