What values to set for modem simulation in Fiddler - fiddler

In Fiddler, I can see editing request-trickle-delay and response-trickle-delay effect the modem simulation, but I am unsure what setting these to say 300 ms actually means. Is this the latency or the simulated bandwidth? Is it possible to set the simulated latency and bandwidth differently?

Those flags delay each 1K of the request or response, therefore, they lower the bandwidth, but do not simulate latency. To simulate latency, use this extension.

Related

VoIP delta spikes below 20ms, causing the jitter to change

I am trying to do some measurements on VoIP. I am using OpenSIPS, RTPProxy, and SIPp for testing.
Everything works fine as expected, but I only have a question regarding the delta time.
Below is a screenshot I got from Wireshark RTP streams' analysis.
Why do I have these spikes below the 20ms?
I am using in a SIPp xml scenario, where 8kulaw has the following characteristics:
8kulaw.wav: RIFF (little-endian) data, WAVE audio, ITU G.711 mu-law,
mono 8000 Hz
Much appreciated!
The "RTP Stream Analysis" from wireshark is giving you hints on the quality of the stream.
Your Max Delta value is 20.15 and occurs at packet 2008.
This will indicate the time between 2 packets which in your use-case are supposed to be spaced by exactly 20ms.
So the maximum difference is very short and should definitly not affect the quality of the stream. Usually, this is used on receiver (for incoming stream): on sender, there is usually no internal latency. This probably explains why you have so short "Max Delta".
The spikes you see are pretty big, but this is mostly because the scale is very short. Not because the stream is bad.

Sending images through sockets

I have an idea for a client-server. The client handles only input, sending it to the server. Server handles the input, logic and then sends the image of the program to the client. The client prints the image on user's screen. Uses udp, slight artefacts in the image are tolerated.
How fast can those images travel through the Internet? Can they travel at least 5 times a second? I don't have 2 computers at hand to test it.
EDIT: One more question - how reliable is UDP protocol? How many pixels would arrive corrupted? Say, 10% on average?
EDIT2: For example, I have an 320x200 32 bit image (red,green,blue + alpha). That's ~2 million bits. How long it takes for the image to arrive from the server to the client, if my ping is X, my uploading speed Y Mbps and my download speed Z Mbps?
The answers to your questions depend heavily on the internet connections of the machines involved. In particular, if the program is heavily graphical, the bandwidth used by the images may be fairly substantial, especially if your client is on a mobile device connecting through the cellular telephony system.
If you have plenty of bandwidth, 5 round trips per second should be achievable most of the time if both client and server are in the U.S., or both are in Europe. There are, for example, interactive computer games that depend on having 4-5 round trips per second for smooth play, and only occasionally have glitches as a result. If client and server are on different continents, and especially if they are on opposite sides of the world, this may be more difficult, as speed of light delays start using a significant proportion of the available transmission time. In the worst case, say between China and Argentina, theoretical speed of light delays alone limit the network to less than 8 round trips per second, so with real network and bandwidth limitations, 5 round trips per second could be difficult to achieve.
The reliability of UDP depends substantially on how congested the connection is. On an uncongested network connection, you'd probably lose 1% of the packets or less. On a very congested network connection, it might be a lot worse - I've seen situations where 80% of the packets were lost.
On an uncongested network, the time for an image to travel from the server to the client would be
(ping time)/2 + (1-packet overhead)*(image size)/(minimum bandwidth)
Packet overhead is only a few percent, so you might be able to drop that term out. Minimum bandwidth would be the minimum of the server upload bandwidth and the client download bandwidth. Note that the image size might be reduced substantially through compression. Don't forget, though, that you also need to allow for time for the input to be sent from the client to the server, which adds another (ping time)/2 at a minimum.

PC receives wrong data using high baudrate of usart

i wanted to use 4Mb baud rate of stm32f103 usart. how can i check that data received in PC are correct? I used hyper terminal but in its setting there is no 4Mb baud rate and when i run my code i receive wrong characters.but in low baud rates like 115200b data received correctly.
If the transmitter and receiver are not sending at the same speed, the receiver will erroneously read the data. Each byte has a start bit that synchronizes the receiver, and the remaining bits are determined by time.
Typical PC RS-232 serial ports only go up to 115200 bps. It is likely that your PC can't handle the 4 Mbps rate. I would recommend using 115200 or lower speed.
If you are communicating between devices and need higher speed, and just using the PC to debug, you could change the speed for debug purposes and set it faster once your comms are working. Alternatively, you could use a logic analyzer - This could be tedious to do manually, but some may have functions to read serial data.
If you have two of the stm32f19 modules, connect them using the USART at 4Mb, at then send a block of data with a checksum (or even a hardcoded block that you can compare). On the receiving unit, either confirm the checksum, or compare the data to see if the link works.

UDP stream with little packets

I have a little network with a client and a server, and I'm testing the FrameRate, changing the dimension of the packet. Particulary, I have an image, changing threshold, I extract keypoints and descriptors and then I send a fixed number of packets (with different dimension with different threshold). Problems happen when udp packets are under MTU dimension, reception rate decrease and frame rate tend to be constant. I verify with wireshark that my reception times are correct, so isn't a server code problem.
this is the graph with the same image sends 30 times for threshold with a 10 step from 40 to 170.
i can't post the image so this is the link
Thanks for the responces
I think that none will interest this answer, but we arrived to the conclusion that the problem is a problem in wifi dongle's drivers.
The trasmission window does not go under a determined time's threshold. So under a determined amount of data while time remains constant, decreases.

Bandwidth measurent by minimum data transfer

I intend to write an application where I will be needing to calculate the network bandwidth along with latency and packet loss rate. One of the constraints is to passively measure the bandwidth (using the application data itself).
What I have read online and understood from a few existing applications is that almost all of them use active probing techniques (that is, generating a flow of probe packets) and use the time difference between arrival of the first and last packets to calculate the bandwidth.
The main problems with such a technique are that it floods the network with probe packets, which runs longer and is not scalable (since we need to run the application at both ends).
One of the suggestions was to calculate the RTT of a packet by echoing it back to the sender and calculate the bandwidth using the following equation:
Bandwidth <= (Receive Buffer size)/RTT.
I am not sure how accurate this could be as the receiver may not always echo back the packet on time to get the correct RTT. Use of ICMP alone may not always work as many servers disable it.
My main application runs over a TCP connection so I am interested in using the TCP connection to measure the actual bandwidth offered over a particular period of time. I would really appreciate if anybody could suggest a simple technique (reliable formula) to measure the bandwidth for a TCP connection.
It is only possible to know the available bandwidth by probing the network. This is due to that a 80% utilized link will still send echo-packets without delay, i.e. it will appear to be 0% occupied.
If you instead just wish to measure the bandwidth your application is using, it is much easier. E.g. keep a record of the amount of data you have transferred in the last second divided into 10ms intervals.
Active probing technique and its variants are bandwidth estimation algorithm. You dont want to use these algorithm to measure bandwidth. Note the difference between 'measure' and 'estimate'.
If you want to use tcp to measure bandwidth, you should be aware that tcp bandwidth is influenced by latency.
The easiest way to measure bandwidth using tcp is by sending tcp packets and measure the transferred bandwidth. It will flood the network. None of the non flooding algorithm reliable in high speed network. Plus, non flooding algorithm assume the channel is clear from traffic. If there is other traffic inside the channel, the result would be skewed. Im not suprised if the result would not make sense.