Activation Function for Neural Network based Face Detection System - neural-network

I'm trying to implement Face Detection with Neural Network using Rowley's method.
www.informedia.cs.cmu.edu/documents/rowley-ieee.pdf
My problem is that i cant find anything about the activation function used in the proposed NN. Have anyone tried to implement Rowley's method, and what activation function should be used? thanks.

I think it is hyperbolic tangent (TanH) function because 1) paper says that: "The neural network produce real values between 1 and -1" - that rules out sigmoid 2) earlier Rowley paper references LeCun 1989 work while discussing network architecture, and that paper explicitly mention hyperbolic tangent.

Related

Can a single input single output neural network with y=x as activation function reflect non-linear behavior?

I am currently learning a little bit about neural networks. One question I can't really get behind is about how neural networks reflect non-linear behavior. From my understanding there is no possibility to reflect non-linear behavior inside a compact set using a neural network.
For example if I would take the function from this question:
y = x^2
and I would use a neural network with a single input and single output the best the neural network could do for each compact set [x0...xn] is a linear function spanning from one end of the set to the other, as at the end all calculations inside the net are linear.
Do I have some misunderstanding about this concept?
The ANN's capabilties to model non-linear behaviour arise from the (usually) non-linear activation function.
If the activation function is linear, then the process of training the network is just another way to create a linear (or multi-linear) fit of input and output data.
Activation function in neural networks is exactly the part, that brings non-linearity. If you use linear activation function, then you cannot train non-linear model (thus fit quadratic or other non-linear functions).
The part, I guess, you are interested in is Universal Approximation Theorem, which says that any continuous function can be approximated with a neural network with a single hidden layer (some assumptions on activation function are applied thou). Take into account, that this theorem does not say anything on optimization of such a network (it does not guarantee you can train such a network with a specific algorithm, but only that such a network exists). Also it does not say anything on the number of neurons you should use.
You can check following links, to get more details:
Original proof with sigmoid activation function: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.441.7873&rep=rep1&type=pdf
And a more friendly derivation: http://mcneela.github.io/machine_learning/2017/03/21/Universal-Approximation-Theorem.html

Step function versus Sigmoid function

I don't quite understand why a sigmoid function is seen as more useful (for neural networks) than a step function... hoping someone can explain this for me. Thanks in advance.
The (Heaviside) step function is typically only useful within single-layer perceptrons, an early type of neural networks that can be used for classification in cases where the input data is linearly separable.
However, multi-layer neural networks or multi-layer perceptrons are of more interest because they are general function approximators and they are able to distinguish data that is not linearly separable.
Multi-layer perceptrons are trained using backpropapagation. A requirement for backpropagation is a differentiable activation function. That's because backpropagation uses gradient descent on this function to update the network weights.
The Heaviside step function is non-differentiable at x = 0 and its derivative is 0 elsewhere. This means gradient descent won't be able to make progress in updating the weights and backpropagation will fail.
The sigmoid or logistic function does not have this shortcoming and this explains its usefulness as an activation function within the field of neural networks.
It depends on the problem you are dealing with. In case of simple binary classification, a step function is appropriate. Sigmoids can be useful when building more biologically realistic networks by introducing noise or uncertainty. Another but compeletely different use of sigmoids is for numerical continuation, i.e. when doing bifurcation analysis with respect to some parameter in the model. Numerical continuation is easier with smooth systems (and very tricky with non-smooth ones).

Matlab - Create RBF Network without using Neural Network Toolbox

In the lectures we only mention how to train the RBF network with Gausian function and how to use the "newrb" tool box in Matlab. But in the assignemnet I need to create my own RBF network which using the NN toolbox is forbidden. Basically I not even know how to start it and our professor not willing to provide any information.
With some tips I have write my own program but the performance is very bad, I am wonder if any one can give me some helpful tutorial or guides that how to create the RBF network with Gaussian function without using NN toolbox.
I have used k-means to obtain the centers and gaussian function to caculuate the weights, the main probrlem is that I have no idea how to design the method that transform the Input matrix to the RBF matrix. Hope you can help.
This is clearly homework, and it's not clear what your question is. But I think you are wondering how to create the Gram matrix. If so, see:
http://en.wikipedia.org/wiki/Gramian_matrix
You should have the math for how to do each step in your textbook and/or notes.

Why do sigmoid functions work in Neural Nets?

I have just started programming for Neural networks. I am currently working on understanding how a Backpropogation (BP) neural net works. While the algorithm for training in BP nets is quite straightforward, I was unable to find any text on why the algorithm works. More specifically, I am looking for some mathematical reasoning to justify using sigmoid functions in neural nets, and what makes them mimic almost any data distribution thrown at them.
Thanks!
The sigmoid function introduces non-linearity in the network. Without a non-linear activation function, the net can only learn functions which are linear combinations of its inputs. The result is called universal approximation theorem or Cybenko theorem, after the gentleman who proved it in 1989. Wikipedia is a good place to start, and it has a link to the original paper (the proof is somewhat involved though). The reason why you would use a sigmoid as opposed to something else is that it is continuous and differentiable, its derivative is very fast to compute (as opposed to the derivative of tanh, which has similar properties) and has a limited range (from 0 to 1, exclusive)

Does it make sense to use an "activation function cocktail" for approximating an unknown function through a feed-forward neural network?

I just started playing around with neural networks and, as I would expect, in order to train a neural network effectively there must be some relation between the function to approximate and activation function.
For instance, I had good results using sin(x) as an activation function when approximating cos(x), or two tanh(x) to approximate a gaussian. Now, to approximate a function about which I know nothing I am planning to use a cocktail of activation functions, for instance a hidden layer with some sin, some tanh and a logistic function. In your opinion does this make sens?
Thank you,
Tunnuz
While it is true that different activation functions have different merits (mainly for either biological plausibility or a unique network design like radial basis function networks), in general you be able to use any continuous squashing function and expect to be able to approximate most functions encountered in real world training data.
The two most popular choices are the hyperbolic tangent and the logistic function, since they both have easily calculable derivatives and interesting behavior around the axis.
If neither if those allows you to accurately approximate your function, my first response wouldn't be to change activation functions. Rather, you should first investigate your training set and network training parameters (learning rates, number of units in each pool, weight decay, momentum, etc.).
If your still stuck, step back and make sure your using the right architecture (feed forward vs. simple recurrent vs. full recurrent) and learning algorithm (back-propagation vs. back-prop through time vs. contrastive hebbian vs. evolutionary/global methods).
One side note: Make sure you never use a linear activation function (except for output layers or crazy simple tasks), as these have very well documented limitations, namely the need for linear separability.