I use sbcl with slime.
I defined a function named slot, and sbcl compiler threw me an error following:
Lock on package SB-ALIEN violated when defining SLOT as a
function while in package COMMON-LISP-USER.
[Condition of type SYMBOL-PACKAGE-LOCKED-ERROR]
See also:
SBCL Manual, Package Locks [:node]
Restarts:
0: [CONTINUE] Ignore the package lock.
1: [IGNORE-ALL] Ignore all package locks in the context of this operation.
2: [UNLOCK-PACKAGE] Unlock the package.
3: [ABORT] Abort compilation.
4: [*ABORT] Return to SLIME's top level.
5: [ABORT] Abort thread (#<THREAD "worker" RUNNING {C3E4771}>)
It looks like the function name slot is reserved for some reason.
I can proceed with option 0 or 2, however, I don't want to see this error everytime after comilation.
Is it possible suppress this error after compilation?
I was thinking about not loading pre-reserved function name like slot, but I am not sure.
In the package you're working in, the name slot without a prefix is the same as the symbol sb-alien:slot. There are a number of ways to work around the fact that you can't use that name to name your own stuff (functions, macros, etc.)
First, you could construct your package in such a way that it doesn't use the sb-alien package. If you have (:use sb-alien) or similar in your defpackage form, you can take it out. After that, if you want to refer to an sb-alien symbol, you have to prefix it with sb-alien:. If there are only a few key symbols in sb-alien that you refer to all the time, you could use the :import clause to import them so you don't need the prefix.
Another option is to continue to :use the sb-alien package, but configure the package to exclude certain symbols. You could do this:
(defpackage #:my-great-package
(:use #:cl #:sb-alien)
(:shadow #:slot))
With a definition like that, slot without a prefix will refer to my-great-package::slot, but define-alien-routine without a prefix will refer to sb-alien:define-alien-routine.
There are lots of other options. The package system is pretty flexible in how it allows you to configure symbol references.
Related
Over the weekend, I had a name clash that was very hard to track down, but I managed to boil it down to a short example - thing is, I thought the package system was supposed to protect me from this, so I'm wondering how it can in future.
If I do this:
(ql:quickload "cl-irc")
(defpackage #:clash-demo
(:use #:cl
#:cl-irc))
(in-package #:clash-demo)
;; This is the name that clashes - I get a warning about this if I compile
;; this interactively (i.e. from slime) but not if I quickload the whole project.
(defun server-name (server)
(format nil "server-name ~a" server))
;; This needs an IRC server to work - if you have docker
;; then this will do the trick:
;;
;; docker run -d --rm --name ircd -p 6667:6667 inspircd/inspircd-docker
(defparameter *connection*
(cl-irc:connect :nickname "clash-demo"
:server "localhost"
:port 6667
:connection-security :none
:username "username"))
After the above, I get the following warning when defining server-name:
WARNING: redefining CL-IRC:SERVER-NAME in DEFUN
And the following error if I try and print *connection* (in my more full-fledged project I got a missing slot in a class that I'd defined - I think the root cause of both the problem I found and the minimal example above is the same though):
Control stack guard page temporarily disabled: proceed with caution
While I get the warning if I define things interactively, in practice I moved a bunch of code into a quickproject:make-project'd and ql:quickload-ed it, which I think silenced the warning as it always loaded cleanly, hence why it took me so long to track down the name clash.
My questions are:
Isn't the package system supposed to protect me from this? I think I can sort of see why the above happens - the reader's already seen the symbol server-name so it thinks I'm referring to the already defined cl-irc:server-name, and re-uses that - but surely the package system should somehow allow me to work around this?
I'm assuming the warning when I quickload-ed the project was silence because quickload assumes I don't want to see warnings from projects, is there a way I can make this more forceful when I load projects I'm making so that it raises an error, or at least warns me of these name clashes? For all I know there are a bunch more that just haven't caused me a problem yet.
I was expecting either (i) the names not to clash (i.e. my file would define the symbol clash-demo:server-name, not re-use cl-irc:server-name and cause it to be redefined) or (ii) this to be an error, or at least a warning when I quickload the project.
Thanks very much in advance for any advice!
Suppose you really like packages A and B and want to :use both of them in your package MINE. They have a hundred external symbols each and you don't want to have to type any package prefixes. However, they both export a symbol with the same name, a:frob and b:frob. If you simply :use them, you will get a symbol conflict.
To resolve the conflict, there are three options to decide what to do when you're in package MINE and you refer to the unqualified symbol frob:
Prefer A so it refers to the the symbol a:frob: (defpackage mine (:use a b) (:shadowing-import-from a frob))
Prefer B so it refers to the symbol b:frob: (defpackage mine (:use a b) (:shadowing-import-from b frob))
Prefer neither so it refers to mine::frob: (defpackage mine (:use a b) (:shadow frob)) - then, to use one from A or B you must write a:frob or b:frob explicitly
Any of these three cases may be preferable depending on your situation. Common Lisp will not automatically choose one for you. I think this is a reasonable design choice.
Briefly, no: the package system is not meant to protect you against this. If you use a package CL-IRC then you're saying that you want, for instance, to get the symbol CL-IRC:SERVER-NAME when you type server-name. What you are not saying is whether you should be allowed to modify the values associated with that symbol in any way, which is an orthogonal question. The package system is just about names, not values.
In the case of functions, then it's very often (but not always! consider loading patches) a mistake to define a function with a given name in multiple contexts. In the case of variables that's slightly less clear: it's probably a mistake if there are multiple def* forms for a given variable in different contexts, but simply assigning to the variable might well be fine.
So what is needed is a way for defining macros (defun etc) to be able to detect this and complain about it.
CL does not provide such a mechanism. Many implementations do however, either by detecting 'different contexts' (which I have been vague about) or by providing a way of saying that certain packages are sacred and redefinitions should not be allowed, or both.
In this case, the implementation has warned you about the redefinition, but Quicklisp may have suppressed that. I am not sure how to desupress warnings like this in Quicklisp.
In summary the answer is that the problem of controlling and limiting redefinition is orthogonal to what the package system does, and unfortunately CL does not provide a standard solution to this second problem.
If you are interested I have a little shim which uses the condition system to make very sure warnings are treated as errors in contexts like this. I could append it to this answer, but not until after Christmas probably.
In Common Lisp with ASDF what is the difference between the define-package in uiop/package and the defpackage macro?
UIOP's one has more clauses.
https://common-lisp.net/project/asdf/uiop.html#UIOP_002fPACKAGE
define-package supports the following keywords: use, shadow, shadowing-import-from, import-from, export, intern -- as per cl:defpackage.
those are the same ones. But the rest of the docstring introduces more of them: recycle, mix, reexport…
I have used reexport which makes the following easier: you don't want to fully use package A (for example, Alexandria). You want to import a couple symbols (easy, with import-from), and you also want to export them (easy too, with export). But in doing so, you had to write the symbols twice. reexport saves duplication.
I heard some complains that defpackage would fail to reload a package in some situations, and define-package worked fine, but I didn't encounter this situation.
(edit): another difference: let's say you ":use" a package in your defpackage definition. Now you erase that line and you compile the package definition again. Your Lisp gives you a warning, telling that your package "also uses the following packages" and lists the one you removed from the definition. You removed the line, but the package still "uses" what you wanted to remove. You can check with (describe (find-package :my-package)).
Do the same with UIOP's define-package: you don't have warnings and your package doesn't "use" the one you removed from the definition anymore, as expected.
This is I suspect, a matter of style and/or personal taste but I thought I'd ask anyway.
I have been in the habit of defining packages thus:
(defpackage :wibble
(:use :cl :drakma)
(:export :main))
Once I have executed IN-PACKAGE (:wibble, in this case), I can then use the symbols in DRAKMA unadorned:
(http-request ...
Then I recently read that seasoned Lisp hackers would rather not :use but:
(drakma:http-request ...
Just wondered what the consensus of opinion was on here and whether there were any pros or cons (not that type of CONS :) ) either way?
Cheers,
Peter
When you use a package, there are a couple subtle ways things might go wrong if the used package changes.
First, the package might export more symbols in the future. If, for example, the package exports a new symbol library:rhombus and you're already using that myapp::rhombus to name something, you are suddenly using the inherited symbol, with all possible attachments (e.g. classes, defuns, macros, etc), with sometimes strange results. If you use qualified symbol names, you will not get any more or any less than the symbols you want.
Second, the package might stop exporting symbols in the future. So if, for example, library:with-rhombus disappears, your call to (with-rhombus (42 42 42) ...) will suddenly get an error for an invalid function call (42 ...) rather than something that points directly to the source of the problem, the "missing" symbol. If you use qualified symbol names, you will get an error along the lines of Symbol WITH-RHOMBUS is not exported from the LIBRARY package which is clearer.
Importing symbols (with :import-from or :shadowing-import-from or import) is not without its own trouble. Importing works on any symbol, regardless of whether it's external or not. So it could be the case that the symbol is now library::rhombus, i.e. not intended for public consumption any more, but importing will still work with no errors.
Which option you use depends on your comfort level with the source package. Do you control it, and you will not make any conflicting changes without thorough testing? Go ahead and import or use to your heart's content. Otherwise, be careful about checking for unintended side-effects as library package interfaces change.
This is more a style issue, so it's impossible to categorize it in black and white, but here are the pros and cons:
Using package-qualified symbols.
Avoids symbol conflicts.
Allows to clearly distinguish foreign symbols.
Allows to easily search, replace, copy,... uses of a certain symbol from the external library (for refactoring, extracting the code to some other place etc.)
Makes code uglier, but only when library names are too long. (For example, I add a nickname re to cl-pprce, and now the code using it is even better, than w/o qualification: think re:scan)
Importing the whole package
Basically, the opposite of the previous case. But I tend to use it with utility libraries, because using qualified names often beats their whole purpose of making code more concise and clear :)
:import-from package symbol
This is one option you've forgotten to mention. I think it may be useful, when you use one or too very distinct symbols from a certain package very frequently. It also allows to import unexported symbols.
Good answers so far.
Another view is that a package and its symbols make up a language. If you think a symbol should be a part of this language, then you should make it available without the need to qualify it with another package - when programming in this language.
For example in the CLIM implementation there is a CLIM-LISP package which sets up the implementation language. It is a variant of the COMMON-LISP package. Then there are packages like CLIM-SYS (resources, processes, locks, ...), CLIM-UTILS (various utilities and extensions of Common Lisp) and CLIM itself. Now in a new package SILICA (an abstract window system) these four packages are used. The implementation of Silica thus is implemented in a language which is built as a union of two languages (the Common Lisp variant CLIM-LISP and the UI commands of CLIM) plus two utility packages which extend CLIM-LISP with some facilities.
In above example it makes sense to use the packages, since they are extending each other to form a new language and the implementation in that new package makes heavy use of those.
If you had a package which needs conflicting packages, then it would not make sense to use them. For example a package could use drawing commands tailored to a GUI and for Postscript output. They would have similar names. Using them both would lead to conflicts. You also want to make clear in the source code for the human reader from where these symbols are coming. Is it a line-drawing command from a postscript or a GTK+ library? Would be great if you can find it out easily - even though the function names are the same.
As a rule of thumb, I :use packages that extend the general language, but use qualified symbols for packages that have some special application. For example, I'd always :use alexandria, but refer fully qualified to symbols from Hunchentoot. When in doubt, I use qualified names.
I am byte-compiling a module. It gives me this warning:
Warning: cl package required at runtime
Why is this a warning? I am well aware that I am using the cl package. In fact there is a (require 'cl) statement in the module.
Is there something wrong with using the cl stuff?
If so, is there a list of published workarounds? The main things I use are mapcan and delete-duplicates.
The reason of this warning is a GNU policy which does not want a package cl to be used in Elisp. But it would be foolish as well to prohibit it completely. So they decided to show a warning.
You can find more information here
Just in case someone reads this on his quest for proper use of cl: The methods described here are now deprecated.
As least as of emacs 24, instead of cl you should use cl-lib or, if the macros suffice, cl-macs. These are new versions of cl that work with a clean namespace. E.g. instead of defun* you have cl-defun.
The old cl-package now is only for backward-compatibility and shouldn't be used in new code.
There are namespace clashes between Elisp and Common Lisp but the cl package gets round them by appending an asterisk to the repeated names. For instance it implements the Common Lisp version of defun but calls it defun*. The upshot is that there are no namespaces clashes between cl and Elisp and it is quite safe to (require 'cl).
If you want to get rid of the silly warning, customize the variable byte-compiler-warnings.[1] This will turn off the warning when you compile the code. If you distribute the code the warning will probably came back when someone else compiles it. If you don't want this to happen use the code:
(with-no-warnings
(require 'cl))
You can stop the byte compiler warning about any Lisp form in a similar way.[2] It's probably a not good idea in general, but you may be able to justify it in this case.
The code:
(eval-when-compile
(require 'cl))
will get rid of the warning, but you will only be able to use the macros from the package if you do this. Macros are evaluated at compile time and Elisp does not need to know about them at run time. If you only use the macros from any package, not just cl, then it is a good idea to use eval-when-compile as it will stop unnecessary packages loading at run time, both saving memory and making the code faster. But it seems to me that it's a misuse of the function to use it just to avoid a warning. And, of course, if you do want to use any of the functions from cl, you can't use eval-when-compile anyway.
[1] You may need to add (require 'bytecomp) to your .emacs file to get access to this variable.
[2] In theory, anyway, but there's a bug in with-no-warnings that means it doesn't supress some warnings about lexical variables.
Common Lisp has lots of namespace clashes with elisp, often the functions seem to do the same thing, but differ in some subtle detail. Mixing the two is a risk that is best not done behind the user's back. For this reason, most of the more useful functions in cl.el are defined as macros, so that cl.el can be required at compile time only, and the macros will then only affect the code that uses them in future sessions of Emacs.
I wasn't able to suppress this message after reading the comments before mine.
However, I received the following instruction from a kind person on the GNU emacs mailing list:
Require cl-lib, and then change the call to use cl-remove-if-not,
instead of remove-if-not.
Which proved to be the remedy.
In sum: by 'requiring cl-lib, one must also change the name of the function/macro call.
HTH....
I'm currently playing with lispbuilder-sdl on SBCL under Windows.
My source code is as follows:
(asdf:operate 'asdf:load-op :lispbuilder-sdl)
(asdf:operate 'asdf:load-op :lispbuilder-sdl-binaries)
(asdf:operate 'asdf:load-op :lispbuilder-sdl-examples)
(sdl-examples:squashed)
When I compile the file I get the error: package "SDL-EXAMPLES" not found.
If I remove the (sdl-examples:squashed) from the file it compiles ok. I can then type (sdl-examples:squashed) at the repl and the demo game starts fine.
Why is the sdl-examples package found from the repl but not when I compile the file?
All of the compilation of that file happens before executing any of the load-ops. So when Lisp compiles the (sdl-examples:squashed) line, it hasn't run the load-op that defines your package.
You can get around this by not mentioning the sdl-examples package that requires the reader to locate its squashed symbol before the load-op is actually executed:
(funcall (symbol-function (intern (symbol-name '#:squashed)
(find-package (symbol-name '#:sdl-examples)))))
The idea is to calculate the package from its symbolic name, lookup the symbol naming your function, and fetch the function it names - but this way requires that the package exist only when the code is run, not when it is first read. Then your four statements can all be compiled, executed in order, and by the time that last statement is executed, your load-ops will have created the package.
So here's a little more info about what's happening here:
Writing '#:some-name refers to a symbol that's not part of any package. So that way we can make a reference to a symbolic name without either (1) assuming its package exists or (2) mucking up some other package with the name.
Then '(symbol-name #:some-name) extracts the name of the symbol as a string. Why not just write "some-name"? You could, and it will usually work. But this way is a little more robust for the case of running a "modern-mode" case-sensitive Lisp.
The find-package maps a string name to Lisp's representation of a package. Remember, by the time you run this line, your package will exist.
intern returns the symbol with the given name that lives in the given package.
symbol-function returns the function object (a lambda abstraction, or more likely, its compiled representation) associated with the symbol.
And then funcall invokes that function.
It is kind of clunky, but unfortunately there's not really a better way to mix calls which load code to create a package with names living in that package in the same file.