Can CONS objects be used as a key to a hash table? - lisp

I've been playing with LISP lately, and I want to attempted to optimize a terribly inefficient recursive function by caching it's output so it only runs each combination of parameters once. I want to save the results into hash table, using either (LIST a b) or (CONS a b) as the key. My question is, is that even possible? Documentation I've read would lead me to believe it is, as the document I read defines the key as an 'object', and defines 'object' as something that was constructed with cons. So I gave this a try.
(defparameter *table* (make-hash-table))
(setf (gethash (list 1 2) *table*) 123)
(format t "~S~%" (gethash (list 1 2) *table*))
And it gives me NIL, when I would expect 123. If i replace the (list 1 2) with a cons it still doesn't work, but when I use an plain integer, it works fine.
I'm using GCL 2.6.12

(make-hash-table :test #'equal)

Solutions for caching results of functions has been already implemented for Common Lisp. One is library fare-memoization, the second is function-cache and both are accessible with the Quicklisp. Using the former is as easy as defining normal function:
(define-memo-function your-time-consuming-function (arg)
(code arg))
For reference please check https://github.com/fare/fare-memoization.

Related

How can automatically identify or allow the user of my program to identify variables in Lisp?

I have something of a subtle (I think) problem in Lisp, related to an earlier question I asked: How do I name a variable after a string in Lisp?
Here's how it goes:
I'm creating a language in which (among other things) the user inputs text strings, and my parser then creates uniquely-identified entity (and other stuff) based on their input.
A typical and simple input would be: my_name:my_contents -- where my_name is the name of the entity, and my_contents is a string.
So, I need to find a way to set up a lisp program that takes the user input, then creates the entities and identifies them based on the user's input.
So far I've considered two approaches:
A. One variable per entity: when the user enters a string, Lisp takes my_name and creates a variable with that name, and puts my_contents inside. The drawback here is that I can't figure out how to set the name of the variable to some user-defined and mutable input such as my_name.
B. A table, such as a hash-table: when the user enters a string, Lisp adds a row to a hash table with my_name as the key and my_contents as the entry. The drawback with this approach is that again I can't find a way to set the key as my_name at any given moment.
In summary, I'm looking for counsel on 1. how to name a variable after a user-defined string or 2. how to set a user-defined string as a key in a hash table or 3. whether there's a better approach.
Thanks in advance!
If you're feeling confused, I suggest you breakdown your plan into smaller pieces. Or just use the repl to play with the ideas, that way you'll see many of your questions answered.
Start: create a hash table:
>> (make-hash-table)
;;... some hash table is created ...
N.B. below, you'll see that this type of hash table won't work with your string keys, but keep going:
wait, you need to refer to it, let's set it to a variable:
>> (setf my-hash *)
or similar:
>> (setf my-hash (make-hash-table))
add some values:
>> (setf (gethash "key1" my-hash) "value1")
>> (setf (gethash "key2" my-hash) "value2")
hmm, I'd like to see the values. There are a few options. Let's check CLHS for one of them: http://clhs.lisp.se/Body/f_maphas.htm#maphash
Copy-paste the last line of the example:
>> (maphash #'(lambda (k v) (print (list k v))) my-hash)
("key1" "value1")
("key2" "value2")
NIL
Now I wonder if I can use gethash to reach entries:
>> (gethash "key1" my-hash)
NIL
I can't! That's because make-hash-table we used above defaults to using 'eql as the test predicate. We need to change that. Do everything again with a better suited hash table:
>> (setf my-hash (make-hash-table :test 'equal))
>> (setf (gethash "key1" my-hash) "value1")
>> (setf (gethash "key2" my-hash) "value2")
>> (maphash #'(lambda (k v) (print (list k v))) my-hash)
("key1" "value1")
("key2" "value2")
>> (gethash "key1" my-hash)
"value1"
that's better.
Forgive me for starting from basics before coming to your question. I felt like we sometimes forget the principles / basics. If you play with your repl like this, I guess you'll find that it'll be easier to find some of the answers you're looking for.
And now, to add to Numbra's answer, here is some pointers:
if you want to use hash tables:
>> (setf user-entered-string "VARIABLE1")
>> (setf user-entered-value "value1")
>> (setf (gethash user-entered-string) user-entered-value)
or, symbols:
>> (intern user-entered-string)
;; now it is a symbol object in current package:
>> (find-symbol user-entered-string)
>> (setf (symbol-value (find-symbol user-entered-string)) user-entered-value)
I'm not sure to understand all of your problems, but:
Name a variable after a user-defined string:
The function that (more or less) does that is intern (or read, but that is way more general). You probably want to intern things in a "user package", so as not to conflict with the actual code.
Hash-tables
Here, I am not sure to really understand what it is that causes you troubles: if the user enters a string (that you can get with e.g. read-line or something more complex if you wish), bound in your code to, say, user-string-name, you can just do (setf (gethash user-string-variable *user-defined-variables*) user-string-value), assuming you have created such a hash-table. Note that by default, hash-tables use eql to compare keys, which is not what you want for strings; you'll need to create the table with the argument :test 'equal.
Other option
Using symbol property lists.
There are probably even more solutions that I haven't thought of. Deciding which of those is the best probably depends on many things, and I'll let you decide, given your application, which one you prefer.

Can a macro be used to make c[...]r combinations with any arbitrary number of car and cdr calls, such as cadaddr?

I recently discovered that all of my implementations of Scheme throw an error when I try to use (cadaddr (list 1 3 (list 5 7) 9)). Apparently, by default Scheme does not allow any car and cdr combinations in the single-function form that use more than four abbreviated car and cdrcalls. I originally blamed this on Scheme's minimalism, but then I discovered that Common Lisp also shares this defect.
Can this be solved with a macro? Can we write a macro that allows an arbitrary amount of a and d in its c[...]r calls and returns the expected result, while also having the Common Lisp-like compatibility with macros like setf? If not, why not? And if so, has a reason ever been given for this is not a default feature in any lisp that I've seen?
Such a macro is described in Let Over Lambda for common lisp. You must wrap your code with (with-cxrs ...) to bring them all into scope, but it walks your code to see which combinators you need. I wrote a Clojure port of it years ago for fun, though of course nobody (including me) has ever wanted to use it for real. You could port it to Scheme if you liked.
(defn cxr-impl [name]
(when-let [op (second (re-matches #"c([ad]+)r" name))]
`(comp ~#(map {\a `first \d `rest} op))))
(defmacro with-cxrs [& body]
(let [symbols (remove coll? (tree-seq coll? seq body))]
`(let [~#(for [sym symbols
:let [impl (cxr-impl (name sym))]
:when impl
thing [sym impl]]
thing)]
~#body)))
user> (macroexpand-1 '(with-cxrs (inc (caadaaddadr x))))
(let [caadaaddadr (comp first first rest first first rest rest first rest)]
(inc (caadaaddadr x)))
https://groups.google.com/g/clojure/c/CanBrJPJ4aI/m/S7wMNqmj_Q0J
As noted in the mailing list thread, there are some bugs you'd have to work out if you wanted to use this for real.

lisp: concat arbitrary number of lists

In my ongoing quest to recreate lodash in lisp as a way of getting familiar with the language I am trying to write a concat-list function that takes an initial list and an arbitrary number of additional lists and concatenates them.
I'm sure that this is just a measure of getting familiar with lisp convention, but right now my loop is just returning the second list in the argument list, which makes sense since it is the first item of other-lists.
Here's my non-working code (edit: refactored):
(defun concat-list (input-list &rest other-lists)
;; takes an arbitrary number of lists and merges them
(loop
for list in other-lists
append list into input-list
return input-list
)
)
Trying to run (concat-list '(this is list one) '(this is list two) '(this is list three)) and have it return (this is list one this is list two this is list three).
How can I spruce this up to return the final, merged list?
The signature of your function is a bit unfortunate, it becomes easier if you don't treat the first list specially.
The easy way:
(defun concat-lists (&rest lists)
(apply #'concatenate 'list lists))
A bit more lower level, using loop:
(defun concat-lists (&rest lists)
(loop :for list :in lists
:append list))
Going lower, using dolist:
(defun concat-lists (&rest lists)
(let ((result ()))
(dolist (list lists (reverse result))
(setf result (revappend list result)))))
Going even lower would maybe entail implementing revappend yourself.
It's actually good style in Lisp not to use LABELS based iteration, since a) it's basically a go-to like low-level iteration style and it's not everywhere supported. For example the ABCL implementation of Common Lisp on the JVM does not support TCO last I looked. Lisp has wonderful iteration facilities, which make the iteration intention clear:
CL-USER 217 > (defun my-append (&rest lists &aux result)
(dolist (list lists (nreverse result))
(dolist (item list)
(push item result))))
MY-APPEND
CL-USER 218 > (my-append '(1 2 3) '(4 5 6) '(7 8 9))
(1 2 3 4 5 6 7 8 9)
Some pedagogical solutions to this problem
If you just want to do this, then use append, or nconc (destructive), which are the functions which do it.
If you want to learn how do to it, then learning about loop is not how to do that, assuming you want to learn Lisp: (loop for list in ... append list) really teaches you nothing but how to write a crappy version of append using arguably the least-lispy part of CL (note I have nothing against loop & use it a lot, but if you want to learn lisp, learning loop is not how to do that).
Instead why not think about how you would write this if you did not have the tools to do it, in a Lispy way.
Well, here's how you might do that:
(defun append-lists (list &rest more-lists)
(labels ((append-loop (this more results)
(if (null this)
(if (null more)
(nreverse results)
(append-loop (first more) (rest more) results))
(append-loop (rest this) more (cons (first this) results)))))
(append-loop list more-lists '())))
There's a dirty trick here: I know that results is completely fresh so I am using nreverse to reverse it, which does so destructively. Can we write nreverse? Well, it's easy to write reverse, the non-destructive variant:
(defun reverse-nondestructively (list)
(labels ((r-loop (tail reversed)
(if (null tail)
reversed
(r-loop (rest tail) (cons (first tail) reversed)))))
(r-loop list '())))
And it turns out that a destructive reversing function is only a little harder:
(defun reverse-destructively (list)
(labels ((rd-loop (tail reversed)
(if (null tail)
reversed
(let ((rtail (rest tail)))
(setf (rest tail) reversed)
(rd-loop rtail tail)))))
(rd-loop list '())))
And you can check it works:
> (let ((l (make-list 1000 :initial-element 1)))
(time (reverse-destructively l))
(values))
Timing the evaluation of (reverse-destructively l)
User time = 0.000
System time = 0.000
Elapsed time = 0.000
Allocation = 0 bytes
0 Page faults
Why I think this is a good approach to learning Lisp
[This is a response to a couple of comments which I thought was worth adding to the answer: it is, of course, my opinion.]
I think that there are at least three different reasons for wanting to solve a particular problem in a particular language, and the approach you might want to take depends very much on what your reason is.
The first reason is because you want to get something done. In that case you want first of all to find out if it has been done already: if you want to do x and the language a built-in mechanism for doing x then use that. If x is more complicated but there is some standard or optional library which does it then use that. If there's another language you could use easily which does x then use that. Writing a program to solve the problem should be something you do only as a last resort.
The second reason is because you've fallen out of the end of the first reason, and you now find yourself needing to write a program. In that case what you want to do is use all of the tools the language provides in the best way to solve the problem, bearing in mind things like maintainability, performance and so on. In the case of CL, then if you have some problem which naturally involves looping, then, well, use loop if you want to. It doesn't matter whether loop is 'not lispy' or 'impure' or 'hacky': just do what you need to do to get the job done and make the code maintainable. If you want to print some list of objects, then by all means write (format t "~&~{~A~^, ~}~%" things).
The third reason is because you want to learn the language. Well, assuming you can program in some other language there are two approaches to doing this.
the first is to say 'I know how to do this thing (write loops, say) in languages I know – how do I do it in Lisp?', and then iterate this for all the thing you already know how to do in some other language;
the second is to say 'what is it that makes Lisp distinctive?' and try and understand those things.
These approaches result in very approaches to learning. In particular I think the first approach is often terrible: if the language you know is, say, Fortran, then you'll end up writing Fortran dressed up as Lisp. And, well, there are perfectly adequate Fortran compilers out there: why not use them? Even worse, you might completely miss important aspects of the language and end up writing horrors like
(defun sum-list (l)
(loop for i below (length l)
summing (nth i l)))
And you will end up thinking that Lisp is slow and pointless and return to the ranks of the heathen where you will spread such vile calumnies until, come the great day, the golden Lisp horde sweeps it all away. This has happened.
The second approach is to ask, well, what are the things that are interesting about Lisp? If you can program already, I think this is a much better approach to the first, because learning the interesting and distinctive features of a language first will help you understand, as quickly as possible, whether its a language you might actually want to know.
Well, there will inevitably be argument about what the interesting & distinctive features of Lisp are, but here's a possible, partial, set.
The language has a recursively-defined data structure (S expressions or sexprs) at its heart, which is used among other things to represent the source code of the language itself. This representation of the source is extremely low-commitment: there's nothing in the syntax of the language which says 'here's a block' or 'this is a conditiona' or 'this is a loop'. This low-commitment can make the language hard to read, but it has huge advantages.
Recursive processes are therefore inherently important and the language is good at expressing them. Some variants of the language take this to the extreme by noticing that iteration is simply a special case of recursion and have no iterative constructs at all (CL does not do this).
There are symbols, which are used as names for things both in the language itself and in programs written in the language (some variants take this more seriously than others: CL takes it very seriously).
There are macros. This really follows from the source code of the language being represented as sexprs and this structure having a very low commitment to what it means. Macros, in particular, are source-to-source transformations, with the source being represented as sexprs, written in the language itself: the macro language of Lisp is Lisp, without restriction. Macros allow the language itself to be seamlessly extended: solving problems in Lisp is done by designing a language in which the problem can be easily expressed and solved.
The end result of this is, I think two things:
recursion, in addition to and sometimes instead of iteration is an unusually important technique in Lisp;
in Lisp, programming means building a programming language.
So, in the answer above I've tried to give you examples of how you might think about solving problems involving a recursive data structure recursively: by defining a local function (append-loop) which then recursively calls itself to process the lists. As Rainer pointed out that's probably not a good way of solving this problem in Common Lisp as it tends to be hard to read and it also relies on the implementation to turn tail calls into iteration which is not garuanteed in CL. But, if your aim is to learn to think the way Lisp wants you to think, I think it is useful: there's a difference between code you might want to write for production use, and code you might want to read and write for pedagogical purposes: this is pedagogical code.
Indeed, it's worth looking at the other half of how Lisp might want you to think to solve problems like this: by extending the language. Let's say that you were programming in 1960, in a flavour of Lisp which has no iterative constructs other than GO TO. And let's say you wanted to process some list iteratively. Well, you might write this (this is in CL, so it is not very like programming in an ancient Lisp would be: in CL tagbody establishes a lexical environment in the body of which you can have tags – symbols – and then go will go to those tags):
(defun print-list-elements (l)
;; print the elements of a list, in order, using GO
(let* ((tail l)
(current (first tail)))
(tagbody
next
(if (null tail)
(go done)
(progn
(print current)
(setf tail (rest tail)
current (first tail))
(go next)))
done)))
And now:
> (print-list-elements '(1 2 3))
1
2
3
nil
Let's program like it's 1956!
So, well, let's say you don't like writing this sort of horror. Instead you'd like to be able to write something like this:
(defun print-list-elements (l)
;; print the elements of a list, in order, using GO
(do-list (e l)
(print e)))
Now if you were using most other languages you need to spend several weeks mucking around with the compiler to do this. But in Lisp you spend a few minutes writing this:
(defmacro do-list ((v l &optional (result-form nil)) &body forms)
;; Iterate over a list. May be buggy.
(let ((tailn (make-symbol "TAIL"))
(nextn (make-symbol "NEXT"))
(donen (make-symbol "DONE")))
`(let* ((,tailn ,l)
(,v (first ,tailn)))
(tagbody
,nextn
(if (null ,tailn)
(go ,donen)
(progn
,#forms
(setf ,tailn (rest ,tailn)
,v (first ,tailn))
(go ,nextn)))
,donen
,result-form))))
And now your language has an iteration construct which it previously did not have. (In real life this macro is called dolist).
And you can go further: given our do-list macro, let's see how we can collect things into a list:
(defun collect (thing)
;; global version: just signal an error
(declare (ignorable thing))
(error "not collecting"))
(defmacro collecting (&body forms)
;; Within the body of this macro, (collect x) will collect x into a
;; list, which is returned from the macro.
(let ((resultn (make-symbol "RESULT"))
(rtailn (make-symbol "RTAIL")))
`(let ((,resultn '())
(,rtailn nil))
(flet ((collect (thing)
(if ,rtailn
(setf (rest ,rtailn) (list thing)
,rtailn (rest ,rtailn))
(setf ,resultn (list thing)
,rtailn ,resultn))
thing))
,#forms)
,resultn)))
And now we can write the original append-lists function entirely in terms of constructs we've invented:
(defun append-lists (list &rest more-lists)
(collecting
(do-list (e list) (collect e))
(do-list (l more-lists)
(do-list (e l)
(collect e)))))
If that's not cool then nothing is.
In fact we can get even more carried away. My original answer above used labels to do iteration As Rainer has pointed out, this is not safe in CL since CL does not mandate TCO. I don't particularly care about that (I am happy to use only CL implementations which mandate TCO), but I do care about the problem that using labels this way is hard to read. Well, you can, of course, hide this in a macro:
(defmacro looping ((&rest bindings) &body forms)
;; A sort-of special-purpose named-let.
(multiple-value-bind (vars inits)
(loop for b in bindings
for var = (typecase b
(symbol b)
(cons (car b))
(t (error "~A is hopeless" b)))
for init = (etypecase b
(symbol nil)
(cons (unless (null (cddr b))
(error "malformed binding ~A" b))
(second b))
(t
(error "~A is hopeless" b)))
collect var into vars
collect init into inits
finally (return (values vars inits)))
`(labels ((next ,vars
,#forms))
(next ,#inits))))
And now:
(defun append-lists (list &rest more-lists)
(collecting
(looping ((tail list) (more more-lists))
(if (null tail)
(unless (null more)
(next (first more) (rest more)))
(progn
(collect (first tail))
(next (rest tail) more))))))
And, well, I just think it is astonishing that I get to use a programming language where you can do things like this.
Note that both collecting and looping are intentionally 'unhygenic': they introduce a binding (for collect and next respectively) which is visible to code in their bodies and which would shadow any other function definition of that name. That's fine, in fact, since that's their purpose.
This kind of iteration-as-recursion is certainly cool to think about, and as I've said I think it really helps you to think about how the language can work, which is my purpose here. Whether it leads to better code is a completely different question. Indeed there is a famous quote by Guy Steele from one of the 'lambda the ultimate ...' papers:
procedure calls may be usefully thought of as GOTO statements which also pass parameters
And that's a lovely quote, except that it cuts both ways: procedure calls, in a language which optimizes tail calls, are pretty much GOTO, and you can do almost all the horrors with them that you can do with GOTO. But GOTO is a problem, right? Well, it turns out so are procedure calls, for most of the same reasons.
So, pragmatically, even in a language (or implementation) where procedure calls do have all these nice characteristics, you end up wanting constructs which can express iteration and not recursion rather than both. So, for instance, Racket which, being a Scheme-family language, does mandate tail-call elimination, has a whole bunch of macros with names like for which do iteration.
And in Common Lisp, which does not mandate tail-call elimination but which does have GOTO, you also need to build macros to do iteration, in the spirit of my do-list above. And, of course, a bunch of people then get hopelessly carried away and the end point is a macro called loop: loop didn't exist (in its current form) in the first version of CL, and it was common at that time to simply obtain a copy of it from somewhere, and make sure it got loaded into the image. In other words, loop, with all its vast complexity, is just a macro which you can define in a CL which does not have it already.
OK, sorry, this is too long.
(loop for list in (cons '(1 2 3)
'((4 5 6) (7 8 9)))
append list)

How to acquire unique object id in Emacs Lisp?

Does emacs lisp have a function that provides a unique object identifier, such as e.g. a memory address? Python has id(), which returns an integer guaranteed to be unique among presently existing objects. What about elisp?
The only reason I know for wanting a function like id() is to compare objects, and ensure that they only compare equal if they are the same (as in, in the same memory location). In Lisps, this is done a bit differently from in Python:
In most lisps, including elisp, there are several different notions of equality. The most expensive, and weakest equivalence is equal. This is not what you want, since two lists (say) are equal if they have the same elements (tested recursively with equal). As such
(equal (list 1 2) (list 1 2)) => T
is true. At the other end of the spectrum is eq, which tests "identity" rather than equality:
(eq (list 1 2) (list 1 2)) => NIL
This is what you want, I think.
So, it seems that Python works by providing one equality test, and then a function that gives you a memory location for each object, which then can be compared as integers. In Elisp (and at least Common Lisp too), on the other hand, there is more than one meaning of "equality".
Note, there is also "eql", which lies somewhere between the two.
(EDIT: My original answer probably wasn't clear enough about why the distinction between eq and equal probably solves the problem the original poster was having)
There is no such feature in Emacs Lisp, as far as I know. If you only need equality, use eq, which performs a pointer comparison behind the scenes.
If you need a printable unique identifier, use gensym from the cl package.
If you need a unique identifier to serve as an index in a data structure, use gensym (or maintain your own unique id — gensym is simpler and less error-prone).
Some languages bake a unique id into every object, but this has a cost: either every object needs extra memory to store the id, or the id is derived from the address of the object, which precludes modifying the address. Python chooses to pay the cost, Emacs chooses not to.
My whole point in asking the question was that I was looking for a way to distinguish between the printed representations of different symbols that have the same name. Thanks to the elisp manual, I've discovered the variable print-gensym, which, when non-nil, causes #: to be prepended to uninterned symbols printed. Moreover, if the same call to print prints the same uninterned symbol more than once, it will mark the first one with #N= and subsequent ones with `#N#. This is exactly the kind of functionality I was looking for. For example:
(setq print-gensym t)
==> t
(make-symbol "foo")
==> #:foo
(setq a (make-symbol "foo"))
==> #:foo
(cons a a)
==> (#1=#:foo . #1#)
(setq b (make-symbol "foo"))
==> #:foo
(cons a b)
==> (#:foo . #:foo)
The #: notation works for read as well:
(setq a '#:foo)
==> #:foo
(symbol-name a)
==> "foo"
Note the ' on '#:foo--the #: notation is a symbol-literal. Without the ', the uninterned symbol is evaluated:
(symbol-name '#:foo)
==> "foo"
(symbol-name #:foo)
==> (void-variable #:foo)

Common Lisp Macros: correct expansion of a generated list

I am building a mechanism to take an arbitrary CLOS object and return a hash from it (useful in my debugging experience).
However, I am not sure how to force a variable expansion. I sense that the solution lies with a correct use of gensym, but I'm not sure how.
;;helper macro
(defun class-slots-symbols (class-name)
"Returns a list of the symbols used in the class slots"
(mapcar 'closer-mop:slot-definition-name
(closer-mop:class-slots
(find-class class-name))))
;;macro that I am having difficulty with
(defmacro obj-to-hash (obj-inst)
"Reads an object, reflects over its slots, and returns a hash table of them"
`(let ((new-hash (make-hash-table))
(slot-list (class-slots-symbols (type-of ,obj-inst))))
;;The slot-list needs to expand out correctly in the with-slots form
(with-slots (slot-list) obj-inst
(loop for slot in slot-list do ;and also here
(format t "~a~&" slot)
(hashset new-hash (string slot) slot)))))
After a macroexpand-1, I find that that this expands into the following code (*bar* is a class object):
(macroexpand-1 '(obj-to-hash *bar*))
LET ((NEW-HASH (MAKE-HASH-TABLE))
(SLOT-LIST (CLASS-SLOTS-SYMBOLS (TYPE-OF *BAR*))))
(WITH-SLOTS (SLOT-LIST) ;; <-- this needs to be expanded to *bar*'s slots
*BAR*
(LOOP FOR SLOT IN SLOT-LIST ;;<-- not so important
DO (FORMAT T "~a~&" SLOT) (HASHSET NEW-HASH (STRING SLOT) SLOT))))
Obviously, the problem is that slot-list is not being expanded. Less obvious (to me) is the solution.
Followup: After Rainer pointed me in the right direction:
(defun class-slots-symbols (class-instance)
"Returns a list of the symbols used in the class slots"
(mapcar 'closer-mop:slot-definition-name
(closer-mop:class-slots
(class-of class-instance))))
(defun object-to-hash (obj)
"Reflects over the slots of `obj`, and returns a hash table mapping
slots to their values"
(let ((new-hash (make-hash-table))
(slot-list (class-slots-symbols obj)))
(loop for slot in slot-list do
(hashset new-hash (string slot)
(slot-value obj slot)))
new-hash))
Just looking at it I can see no reason why this should be a macro. Rewriting it as a function will save you a lot of trouble.
The use of WITH-SLOTS is not possible they way you try it. The object is not known in general until runtime. The compiler needs to know the slots of the object at compile time already. You need to use SLOT-VALUE and look up the slot value at runtime.
You are thinking in many ways too complicated and your code is slightly confused. You can get rid of some confusion by following simple rules and avoiding some wording.
Let's look at your code:
First, it is not a helper macro, since what follows is a function.
;;helper macro
(defun class-slots-symbols (class-name)
Why take a class name? Why not use the class itself? Classes are first class objects. Write function with obvious interfaces. Elementary functions should work on the basic data types.
"Returns a list of the symbols used in the class slots"
In the class slots no symbols are used. slots have names, one can get this symbol.
(mapcar 'closer-mop:slot-definition-name
(closer-mop:class-slots
(find-class class-name))))
It is no wonder you have a problem with this macro. It is simply because it should be a function, not a macro. Macros are for source transformation. All you need is a simple computation, so no macro is needed
;;macro that I am having difficulty with
(defmacro obj-to-hash (obj-inst)
Poor wording: obj-inst. Either name it object or instance. Not both.
"Reads an object, reflects over its slots, and returns a hash table of them"
Poor documentation: you don't READ anything. Read is an I/O operation and in your code is none. You are talking about an 'object', but above you have something like 'obj-inst'. Why talk about the same thing in two different ways? You may want to document what the hash table actual maps. From which keys to which values?
`(let ((new-hash (make-hash-table))
new-hash is also a poor name. Basically the thing is a hash-table.
(slot-list (class-slots-symbols (type-of ,obj-inst))))
Why TYPE-OF and then later in the helper function call FIND-CLASS? Common Lisp has CLASS-OF, which returns the class directly.
;;The slot-list needs to expand out correctly in the with-slots form
(with-slots (slot-list) obj-inst
Above won't work since WITH-SLOTS expects slot names at compile time, not a slot-list.
(loop for slot in slot-list do ;and also here
(format t "~a~&" slot)
(hashset new-hash (string slot) slot)
HASHSET is not needed, unless it does something special. The usual way to set values is via SETF. SETF takes the form to read a place and the form to compute a value. That's all. It works for all kinds of data structures. One never needs to remember again how the writer function looks like (name, parameter list, ...).
))))
Here is my version:
Note that I use the package CLOS, you may want to use your package CLOSER-MOP
(defun class-slots-symbols (class)
"Returns a list of the symbol names of the class slots"
(mapcar 'clos:slot-definition-name
(clos:class-slots class)))
Above is a simple function taking a class and returning the list of slot names.
Next, we have a simple function, which in this form has been written a million times in Common Lisp:
(defun object-to-hash (object)
"returns a hashtable with the object's slots as keys and slot-values as values"
(let ((hash-table (make-hash-table)))
(loop for slot-name in (class-slots-symbols (class-of object))
do (setf (gethash slot-name hash-table)
(string (slot-value object slot-name))))
hash-table))
We can also rewrite it to slightly older style Lisp:
(defun object-to-hash (object &aux (hash-table (make-hash-table)))
"returns a hashtable with the object's slots as keys
and string versions of the slot-values as values"
(dolist (slot-name (class-slots-symbols (class-of object)) hash-table)
(setf (gethash slot-name hash-table)
(string (slot-value object slot-name)))))
Above is much simpler and has the whole confusion about macros, generating code, compile time information vs. runtime, ... removed. It is much easier to understand, maintain and debug.