Matlab: finding polar coordinates from cartesian coordinates - matlab

I am a newcomer to Matlab and programming in general. My Cartesian to polar conversion function that I wrote doesn't work.
syms x y
function [r,theta]=something[x,y]
r=(x^2+y^2)^.5
theta=atan(x/y)
end

What you are trying to do is create a function script file, but you have a non-function declaration statement at the beginning of your file. You can't do this. As such, you need to remove the syms x y statement at the beginning of your code. Also, you aren't declaring your function properly. You need to use round braces, not square braces to define your input parameters.
I would also use atan2 instead of atan because it finds the proper four-quadrant arc-tangent of the Cartesian coordinates. Also, use sqrt not ^.5 to take the square root. It's more stable. Also, to properly handle vector inputs, you need to make sure that x and y use .^2 in the r calculation and not ^2. Therefore, do this instead:
function [r,theta]=something(x,y) %// Change
r=sqrt(x.^2 + y.^2); %// Change
theta=atan2(y, x); %// Change
end
Place that into a file called something.m, then you can go into the command prompt and do this:
[r,theta] = something(x,y);
x and y are the x and y values of your Cartesian coordinates. What's great is that x and y can be a single value, a vector or a matrix of any size.

You can use the cart2pol function:
[theta, rho] = cart2pol(x, y)
Or do this:
theta = atan2(y, x) % use atan2() instead of atan()
rho = sqrt(x.^2 + y.^2) % use sqrt() instead of .^5

This is very easy with complex numbers. Specifically, if the given Cartesian coordinates are interpreted as the real and imaginary parts of a complex number, then the polar coordinates are the magnitude (abs) and argument (angle) of that complex number:
>> z = x+1j*y;
>> r = abs(z);
>> theta = angle(z);

Related

How can i plot an ellipse and parabola together in Matlab?

I need to plot a parabola and ellipse. However the ellipse is giving me trouble. Can anyone help? The equations are: y = -5*x^2 + 2 and (x^2/16) + (y^2/2) = 4
I've tried this code but obviously I feel like like it isn't right.
x = linspace(-5, 5);
y1 = (x.^2/16) + (y.^2/2) - 1;
y2 = -5*x.^2 +2;
figure(1)
plot(x, y1)
hold on
plot(x, y2)
hold off
Firstly, you did not define a range variable x. Secondly, the ellipse won't pass the vertical line test and can't be plotted like a regular function f(x). Thirdly, your equation y1 = (x.^2/16) + (y.^2/2) - 1; is non-sensical because you have y on each side.
You could correct your method by defining a range variable x1 and x2 that each have appropriate ranges for the functions your plotting. What I mean by this is that you probably don't want the same range for each function, because the ellipse is undefined over most of the range that the parabola is defined. To plot the ellipse using f(x) you could observe that there are + and - values that are identical, using this fact you could plot your ellipse by two functions one to represent the top half and one to represent the bottom half, each of these would pass the vertical line test.
OR
You could utilize ezplot and have a nice time with it because it makes your life easier. Here is a solution.
ezplot('x^2/16+y^2/2-4'); axis equal; hold on
ezplot('-5*x^2+2-y')
There are multiple ways to plot an ellipse, e.g. you could also use a parametric representation of the equation.
In your approach though, when plotting functions using plot(x,y) command, you need to express your dependent variable (y) through independent variable (x). You defined the range for x, which is what you substitute into your equations in order to find y's. While for the parabola, the dependency of y from x is obvious, you forgot to derive such a relationship for the ellipse. In this case it will be +-sqrt((1 - x^2/16)*2). So in your approach, you'll have to take into account both negative and positive y's for the same value of x. Also there's discrepancy in your written equation for the ellipse (=4) and the one in Matlab code (=1).
x = linspace(-5, 5);
y1 = sqrt((1 - x.^2/16)*2);
y2 = -5*x.^2 +2;
figure(1)
plot(x, real(y1), 'r', x, -real(y1), 'r')
hold on
plot(x, y2)
hold off
Since the ellipse has real y's not on the whole x domain, if you want to plot only real parts, specify real(y1) or abs(y1) (even though Matlab does it for you, too). You can also dismiss complex numbers for certain x when computing y1, but you'll need a for-loop for that.
In order to make things simpler, you can check the function fimplicit, ezplot is not recommended according to Matlab's documentation. Or if you want to plot the ellipse in a parametric way, fplot will work, too.
Another (more classic) approach for parametric plotting is given here already, then you don't need any other functions than what you already use. I think it is the simplest and most elegant way to plot an ellipse.
You will not be able to generate points for the ellipse using a function f(x) from a Cartesian linspace range. Instead, you can still use linspace but for the angle in a polar notation, from 0 to 2*pi. You should also be able to easily adjust radius and offset on both axis on the cos and sin expressions.
x = linspace(-5, 5);
y2 = -5*x.^2 +2;
figure(1)
clf;
plot(x, y2)
hold on
a = linspace(0,2*pi);
x2 = 4*cos(a);
y2 = sqrt(2)*sin(a);
plot(x2, y2)
xlim([-5,5]);
ylim([-5,5]);
hold off

Plot sine function in MATLAB

I'm trying to plot this equation but i'm some difficulties, some help please.
I here is what i have tried.
x=[0:pi/20:4*pi];
y= (25*sin(3)*t);
plot (x,y)
Your code isn't working because t is undefined. You either need to change your definition of x to be t, for example:
t=[0:pi/20:4*pi];
or you need to make your y a function of x, rather than t, for example:
y= (25*sin(3)*x);
I am curious if your original equation/function that you are trying to plot is y(t)=25 sin(3 t). If this is the case, then you need to change your parenthesis so that sin is a function of the independent variable (x or t). This would look like:
y = 25*sin(3*x);
I think you meant to get oscillations:
x = [0:pi/20:4*pi];
y = 25*sin(3*x);
plot(x,y)
You need to assign equal vector length value to t as of x.
However, I believe, you need to replace x with t in your equation.
y= (25*sin(3)*x); # will plot a straight line since you have a constant sin(3)
# which you are just multiplying with x resulting in x verses constant x
I assume you want to write the equation as
x=[0:pi/20:4*pi];
y= (25*sin(3*x));
plot (x,y)
Plot Matlab

How do I plot relations in matlab?

I want to plot relations like y^2=x^2(x+3) in MATLAB without using ezplot or doing algebra to find each branch of the function.
Does anyone know how I can do this? I usually create a linspace and then create a function over the linspace. For example
x=linspace(-pi,pi,1001);
f=sin(x);
plot(x,f)
Can I do something similar for the relation I have provided?
What you could do is use solve and allow MATLAB's symbolic solver to symbolically solve for an expression of y in terms of x. Once you do this, you can use subs to substitute values of x into the expression found from solve and plot all of these together. Bear in mind that you will need to cast the result of subs with double because you want the numerical result of the substitution. Not doing this will still leave the answer in MATLAB's symbolic format, and it is incompatible for use when you want to plot the final points on your graph.
Also, what you'll need to do is that given equations like what you have posted above, you may have to loop over each solution, substitute your values of x into each, then add them to the plot.
Something like the following. Here, you also have control over the domain as you have desired:
syms x y;
eqn = solve('y^2 == x^2*(x+3)', 'y'); %// Solve for y, as an expression of x
xval = linspace(-1, 1, 1000);
%// Spawn a blank figure and remember stuff as we throw it in
figure;
hold on;
%// For as many solutions as we have...
for idx = 1 : numel(eqn)
%// Substitute our values of x into each solution
yval = double(subs(eqn(idx), xval));
%// Plot the points
plot(xval, yval);
end
%// Add a grid
grid;
Take special care of how I used solve. I specified y because I want to solve for y, which will give me an expression in terms of x. x is our independent variable, and so this is important. I then specify a grid of x points from -1 to 1 - exactly 1000 points actually. I spawn a blank figure, then for as many solutions to the equation that we have, we determine the output y values for each solution we have given the x values that I made earlier. I then plot these on a graph of these points. Note that I used hold on to add more points with each invocation to plot. If I didn't do this, the figure would refresh itself and only remember the most recent call to plot. You want to put all of the points on here generated from all of the solution. For some neatness, I threw a grid in.
This is what I get:
Ok I was about to write my answer and I just saw that #rayryeng proposed a similar idea (Good job Ray!) but here it goes. The idea is also to use solve to get an expression for y, then convert the symbolic function to an anonymous function and then plot it. The code is general for any number of solutions you get from solve:
clear
clc
close all
syms x y
FunXY = y^2 == x^2*(x+3);
%//Use solve to solve for y.
Y = solve(FunXY,y);
%// Create anonymous functions, stored in a cell array.
NumSol = numel(Y); %// Number of solutions.
G = cell(1,NumSol);
for k = 1:NumSol
G{k} = matlabFunction(Y(k))
end
%// Plot the functions...
figure
hold on
for PlotCounter = 1:NumSol
fplot(G{PlotCounter},[-pi,pi])
end
hold off
The result is the following:
n = 1000;
[x y] = meshgrid(linspace(-3,3,n),linspace(-3,3,n));
z = nan(n,n);
z = (y .^ 2 <= x .^2 .* (x + 3) + .1);
z = z & (y .^ 2 >= x .^2 .* (x + 3) - .1);
contour(x,y,z)
It's probably not what you want, but I it's pretty cool!

How to integrate over a discrete 2D surface in MATLAB?

I have a function z = f(x, y), where z is the value at point (x, y). How may I integrate z over the x-y plane in MATLAB?
By function above, I actually mean I have something similar to a hash table. That is, given a (x, y) pair, I can look up the table to find the corresponding z value.
The problem would be rather simple, if the points were uniformly distributed over x-y plane, in which case I can simply sum up all the z values, multiply it with the bottom area, and finally divide it by the number of points I have. However, the distribution is not uniform as shown below. So I am actually asking for the computation method that minimises the error.
The currently accepted answer will only work for gridded data. If your data is scattered you can use the following approach instead:
scatteredInterpolant + integral2:
f = scatteredInterpolant(x(:), y(:), z(:), 'linear');
int = integral2(#(x,y) f(x,y), xmin, xmax, ymin, ymax);
This defines the linear interpolant f of the data z(i) = f(x(i),y(i)) and uses it as an argument to integral2. Note that ymin and ymax, instead of doubles, can be function handles depending on x. So usually you will be integrating rectangles, but this could be used for integration regions a bit more complicated.
If your integration area is rather complicated or has holes, you should consider triangulating your data.
DIY using triangulation:
Let's say your integration area is given by the triangulation trep, which for example could be obtained by trep = delaunayTriangulation(x(:), y(:)). If you have your values z corresponding to z(i) = f(trep.Points(i,1), trep.Points(i,2)), you can use the following integration routine. It computes the exact integral of the linear interpolant. This is done by evaluating the areas of all the triangles and then using these areas as weights for the midpoint(mean)-value on each triangle.
function int = integrateTriangulation(trep, z)
P = trep.Points; T = trep.ConnectivityList;
d21 = P(T(:,2),:)-P(T(:,1),:);
d31 = P(T(:,3),:)-P(T(:,1),:);
areas = abs(1/2*(d21(:,1).*d31(:,2)-d21(:,2).*d31(:,1)));
int = areas'*mean(z(T),2);
If you have a discrete dataset for which you have all the x and y values over which z is defined, then just obtain the Zdata matrix corresponding to those (x,y) pairs. Save this matrix, and then you can make it a continuous function using interp2:
function z_interp = fun(x,y)
z_interp = interp2(Xdata,Ydata,Zdata,x,y);
end
Then you can use integral2 to find the integral:
q = integral2(#fun,xmin,xmax,ymin,ymax)
where #fun is your function handle that takes in two inputs.
I had to integrate a biavariate normal distribution recently in MatLab. The idea is very simple. Matlab defines a surface through a meshgrid, so from x, y you need to do this:
x = -10:0.05:10;
y = x;
[X,Y] = meshgrid(x',y');
...for example. Then, let's call FX the function that defines the value at each point of the surface. To calculate the integral you just need to do this:
surfint = zeros(length(X),1);
for a = 1:length(X)
surfint(a,1) = trapz(x,FX(:,a));
end
trapz(x, surfint)
For me, this is the simplest way.

How do you plot elliptic curves over a finite field using matlab

I need to draw an elliptic curve over the finite field F17(in other words, I want to draw some specific dots on the curve), but somehow I don't get it right.
The curve is defined by the equation:
y^2 = x^3 +x + 1 (mod 17)
I tried the way below, but it can't work.
for x = 0:16, plot(x, mod(sqrt(x^3+x+1), 16),'r')', end
Can someone help ?
[Update]
According to Nathan and Bill's suggestions, here is a slightly modified version.
x = 0:18
plot(mod(x,16), mod(sqrt(x.^3+x+1), 16),'ro')
However, I feel the figure is WRONG , e.g.,y is not an integer when x=4 .
You have to test all points that fulfill the equation y^2 = x^3 +x + 1 (mod 17). Since it is a finite field, you cannot simply take the square root on the right side.
This is how I would go about it:
a=0:16 %all points of your finite field
left_side = mod(a.^2,17) %left side of the equation
right_side = mod(a.^3+a+1,17) %right side of the equation
points = [];
%testing if left and right side are the same
%(you could probably do something nicer here)
for i = 1:length(right_side)
I = find(left_side == right_side(i));
for j=1:length(I)
points = [points;a(i),a(I(j))];
end
end
plot(points(:,1),points(:,2),'ro')
set(gca,'XTick',0:1:16)
set(gca,'YTick',0:1:16)
grid on;
Matlab works with vectors natively.
your syntax was close, but needs to be vectorized:
x = 0:16
plot(x, mod(sqrt(x.^3+x+1), 16),'r')
Note the . in x.^3. This tells Matlab to cube each element of x individually, as opposed to raising the vector x to the 3rd power, which doesn't mean anything.
You can use this code if you want to plot on Real numbers:
syms x y;
v=y^2-x^3-x-1;
ezplot(v, [-1,3,-5,5]);
But, for plot in modulo, at first you can write below code;
X=[]; for x=[0:16], z=[x; mod(x^3+x+1,17)]; X=[X, z]; end, X,
Then, you can plot X with a coordinate matrix.