From 2 simple lists (e.g. (1 2 3) and (a b c)) I am trying to create a list of lists ((1 a) (2 b) (3 c)). However, following code is not working:
(defun comblist_op (list1 list2)
(let ((combl '()))
(loop for i in list1 do(
loop for j in list2 do(
(push (list i j) combl))))
combl))
The error is:
*** - SYSTEM::%EXPAND-FORM: (PUSH (LIST I J) COMBL) should be a lambda expression
Do I need to write lambda expression here?
You don't need nested loops, just one loop that iterates over list and list2 at the same time. Nested loops will make a cross-product, not just combine corresponding elements.
The error you're getting is because you're putting an extra set of parentheses around the expressions after do. It doesn't require you to wrap them up.
(defun comblist (list1 list2)
(let ((combl '()))
(loop for i in list1
for j in list2
do (push (list i j) combl))
(nreverse combl)))
You need to reverse the result list because PUSH will create it in the reverse order than the original lists.
You can also use the built-in COLLECT operator of LOOP.
(defun comblist (list1 list2)
(loop for i in list1
for j in list2
collect (list i j)))
If you want all the combinations of the elements from the two lists, nested loops will work. Just fix the problem with the extra parentheses around the DO expressions.
(defun comblist (list1 list2)
(let ((combl '()))
(loop for i in list1
do
(loop for j in list2
do
(push (list i j) combl)))
combl))
Related
I have a function that can produce a list of n-element sublists from a list of elements but I am stuck in filtering out elements that are just permutations of each other. For example, f(A,B) -> ((A, B) (B,A)) is what I get but I just want ((A,B)) since (B,A) is a permutation. Is there a lisp function for this? I don't need the whole answer but a clue would be appreciated, note that A,B need not be atoms but can be string literals and even lists themselves.
I am doing this
(let (newlist '())
(loop :for x in l1 :do
(loop :for y in l2 :do
(push (list x y) newlist)))
... and I have another function that filters out these duplicates but it is clunky and probs won't scale for large inputs.
One interesting function is the (destructive) pushnew which pushes an element to a list only if it is not already existent in the set (list).
(defun pair-comb (l1 l2 &key (test #'eql) (key #'identity))
(let ((result '()))
(loop for x in l1 do
(loop for y in l2 do
(pushnew (list x y) result :test test :key key))
finally (return result))))
When we make the comparison between the elements in a way that it is order-agnostic, we would have the perfect function for us to collect different lists while ruling out the permutations of any of the already collected lists.
This can be done by #'sort-ing each list and compare by #'equalp or whatever equality function.
(pair-comb '(1 2 3) '(1 2 3 4 5) :test #'equalp :key (lambda (x) (sort x #'<)))
;;=> ((3 5) (3 4) (3 3) (2 5) (2 4) (2 3) (2 2) (1 5) (1 4) (1 3) (1 2) (1 1))
;; well, actually in this case #'eql would do it.
;; when using non-numeric elements, the `#'<` in sort has to be changed!
I am trying to learn how lisp works. Below is a part of a insertion sort algorithm and I don't understand what it is doing as a whole. I kind of understand what predicate list is but not sure what it is checking. Could someone explain?
(defun span (predicate list)
(let ((tail (member-if-not predicate list)))
(values (ldiff list tail) tail)))
(member-if-not p l) returns a tail of l beginning with the first element for which p is false. So (member-if-not #'evenp '(2 3 4)) is (3 4) (and this is eq to the cdr of the original list in this case).
If l2 is a tail of l1 then (ldiff l1 l2) returns a list of the elements of l1 which precede it.
So
(let ((l '(2 3 4)))
(let ((tail (member-if-not #'evenp l)))
(values (ldiff l tail) tail)))
will return (2) and (3 4) (and the second value will be the cdr of the original list).
I have two lists as follows:
(x y z) & (2 1)
and I want to have a result like:
((x y) (z))
The relation of the lists is quite clear. So basically I want to rearrange the members of the first list into a list of lists with two (length of second list) lists.
I have tried running two dotimes iterations to do this:
(let ((result) (list1* list1))
(dotimes (n (length list2) result)
(progn (setq result
(append result
(list (let ((result2))
(dotimes (m (nth n list2) result2)
(setq result2
(append result2
(list (nth m list1*)))))))))
(setq list1*
(subseq list1* 0 (nth n list2))))))
The idea is that I make the first list of the expected result (x y), and then I want to update the (x y z) list so that the x any y are removed and I only have (z). Then the loop runs again to get the (z) list in the expected result. This does not work correctly and results in:
((x y) (x))
which means apparently the second command for progn which is basically updating the list1* is not working. Clearly there must be a correct and better way of doing this and I was wondering whether anyone can help with this. Also explain why it is not possible to have the solution explained?
If I see that right, your problem is in (subseq list1* 0 (nth n list2)), which returns the part of the list that you do not want.
I have the following to offer:
(defun partition-list (list lengths)
(mapcar (lambda (length)
(loop :repeat length
:collect (pop list)))
lengths))
This is a bit simplistic, of course, as it does not handle unexpected input, such as (length list) being smaller than (reduce #'+ lengths), but it can be expanded upon.
Just for the sake of example, an alternative using iterate:
(defun partition-list (list by)
(iter:iter
(iter:for element in list)
(iter:for i from 1)
(iter:generating measure in by)
(iter:collect element into sublist)
(when (= (or measure (iter:next measure)) i)
(iter:collect sublist)
(iter:next measure)
(setf i 0 sublist nil))))
I am a LISP newbie.
To get the running sum of a list, I am writing like --
(setf sum 0.0)
(mapcar #'(lambda(x)
(setf sum (+ sum x)) sum) values))
For example, if you give '(1 2 3 4) as input, the above code returns '(1 3 6 10) as output and so forth.
Is it possible to do the same thing (in a more elegant way) without using the global variable sum ?
(loop for x in '(1 2 3 4) sum x into y collect y)
scanl is a oneliner:
(defun scanl (f init xs)
(loop for x in xs collect (setf init (funcall f init x))))
You could use loop, like this:
(defun running-sum (xs)
(loop with sum = 0
for x in xs
collect (setf sum (+ sum x))))
(running-sum '(1 2 3 4))
It's fundamentally the same thing, but it uses a local variable instead of a global one, and might be more clear.
Alternatively, you could define a recursive function, and a wrapper function:
(defun running-sum-recursive (xs)
(running-sum-recursive2 0 xs))
(defun running-sum-recursive2 (sum xs)
(if (eq xs nil)
nil
(let ((new-sum (+ sum (car xs))))
(cons new-sum (running-sum-recursive2 new-sum (cdr xs))))))
(running-sum-recursive '(1 2 3 4))
However this seems needlessly complicated to me when loop is available.
Note that in Haskell, you could do a running sum like this:
runningSum xs = scanl1 (+) xs
runningSum [1, 2, 3, 4]
The key here is the scanl1 function. It's possible that something similar exists in Lisp (and we've very nearly written it twice now), but I haven't used Lisp in a while.
Edit: After some searching, I don't think Common Lisp includes anything quite like scanl or scanl1, so here they are:
(defun scanl (f val xs)
(loop for x in xs
collect (setf val (funcall f val x))))
(defun scanl1 (f xs)
(cons (car xs)
(scanl f (car xs) (cdr xs))))
(scanl1 #'+ '(1 2 3 4))
Edit: Thanks to huaiyuan's answer for a suggestion about how the loops could be shortened.
Or you could use higher-order functions
(define (running-sum ls)
(cdr (reverse (foldl (lambda (y xs) (cons (+ (car xs) y) xs)) '(0) ls))))
Haskell does have a rich inventory of functions for list recursion, but we've got reduce at least. Here is an elementary (i. e. without the loop magic) functional solution:
(defun running-sum (lst)
(reverse (reduce (lambda (acc x)
(cons (+ (first acc) x) acc))
(rest lst)
:initial-value (list (first lst)))))
I'm using the head of the original list as the initial value and walk through the rest of the list adding sums at the head (because it's natural to add at the head), finally reversing the list thus obtained.
One can use reduce in most cases when there's a need to traverse a sequence accumulating a value.
Here is an elementary iterative solution using the push-nreverse idiom:
(defun running-sum (lst)
(let ((sums (list (first lst))))
(dolist (x (rest lst))
(push (+ x (first sums)) sums))
(nreverse sums)))
In Scheme I would calculate the sum of the list recursively using an accumulator. Like so:
; Computes a list of intermediary results of list summation
(define list-sum
(lambda (l)
(letrec ((recsum (lambda (lst acc acclst)
(if (pair? lst)
(recsum (cdr lst) (+ acc (car lst)) (cons acc acclst))
(cons acc acclst)))))
(recsum (cdr l) (car l) '()))))
Output:
> (list-sum '(1 2 3 4))
(10 6 3 1)
> (list-sum '(2 4 6 8 10))
(30 20 12 6 2)
>
The trick to recurse over a list is to take the first element/car off each time and pass the rest/cdr. You can keep intermediary results by using an extra parameter (called an accumulator) and pass the sum in that. I've used two accumulators above: one for the last sum and one for a list of all previous sums.
I've never done anything in LISP, so I can't tell if this translates directly to your dialect(?), but it's conceptually simple and I'm sure it's doable in LISP as well.
Do ask if something is not immediately clear. It's been a while since I've used this family of languages :)
I apologize for the bad English..
I have a task to write a function called "make-bag" that counts occurences of every value in a list
and returns a list of dotted pairs like this: '((value1 . num-occurences1) (value2 . num-occurences2) ...)
For example:
(make-bag '(d c a b b c a))
((d . 1) (c . 2) (a . 2) (b . 2))
(the list doesn't have to be sorted)
Our lecturer allows us to us functions MAPCAR and also FILTER (suppose it is implemented),
but we are not allowed to use REMOVE-DUPLICATES and COUNT-IF.
He also demands that we will use recursion.
Is there a way to count every value only once without removing duplicates?
And if there is a way, can it be done by recursion?
First of, I agree with Mr. Joswig - Stackoverflow isn't a place to ask for answers to homework. But, I will answer your question in a way that you may not be able to use it directly without some extra digging and being able to understand how hash-tables and lexical closures work. Which in it's turn will be a good exercise for your advancement.
Is there a way to count every value only once without removing duplicates? And if there is a way, can it be done by recursion?
Yes, it's straight forward with hash-tables, here are two examples:
;; no state stored
(defun make-bag (lst)
(let ((hs (make-hash-table)))
(labels ((%make-bag (lst)
(if lst
(multiple-value-bind (val exists)
(gethash (car lst) hs)
(if exists
(setf (gethash (car lst) hs) (1+ val))
(setf (gethash (car lst) hs) 1))
(%make-bag (cdr lst)))
hs)))
(%make-bag lst))))
Now, if you try evaluate this form twice, you will get the same answer each time:
(gethash 'a (make-bag '(a a a a b b b c c b a 1 2 2 1 3 3 4 5 55)))
> 5
> T
(gethash 'a (make-bag '(a a a a b b b c c b a 1 2 2 1 3 3 4 5 55)))
> 5
> T
And this is a second example:
;; state is stored....
(let ((hs (make-hash-table)))
(defun make-bag (lst)
(if lst
(multiple-value-bind (val exists)
(gethash (car lst) hs)
(if exists
(setf (gethash (car lst) hs) (1+ val))
(setf (gethash (car lst) hs) 1))
(make-bag (cdr lst)))
hs)))
Now, if you try to evaluate this form twice, you will get answer doubled the second time:
(gethash 'x (make-bag '(x x x y y x z z z z x)))
> 5
> T
(gethash 'x (make-bag '(x x x y y x z z z z x)))
> 10
> T
Why did the answer doubled?
How to convert contents of a hash table to an assoc list?
Also note that recursive functions usually "eat" lists, and sometimes have an accumulator that accumulates the results of each step, which is returned at the end. Without hash-tables and ability of using remove-duplicates/count-if, logic gets a bit convoluted since you are forced to use basic functions.
Well, here's the answer, but to make it a little bit more useful as a learning exercise, I'm going to leave some blanks, you'll have to fill.
Also note that using a hash table for this task would be more advantageous because the access time to an element stored in a hash table is fixed (and usually very small), while the access time to an element stored in a list has linear complexity, so would grow with longer lists.
(defun make-bag (list)
(let (result)
(labels ((%make-bag (list)
(when list
(let ((key (assoc (car <??>) <??>)))
(if key (incf (cdr key))
(setq <??>
(cons (cons (car <??>) 1) <??>)))
(%make-bag (cdr <??>))))))
(%make-bag list))
result))
There may be variations of this function, but they would be roughly based on the same principle.