I am writing a function called palindrome that tests if a list is a palindrome. It works 100% for regular lists such as (1 2 1), but if I use (1 (2) 1), I get a bad argument type error.
Here is my function
(defun palindrome (x)
(if (NULL x) t
(let ( ( a (car x)) (b (lastelement x)))
(if ( = a b)
(palindrome (cdr (butlast x)))
nil))))
The function = is reserved exclusively for numbers. When used with a list or other type of element it returns an error. Use instead eql.
Incidentally, note that your function is very inefficient. Normally (i.e. not for homework) you would create a reversed copy of the list and compare it element by element with the original list.
Related
I am new to lisp and I have a problem, I'm trying to find the number in the list but it is not working. I haven't made the return statement yet
(defun num (x 'y)
(if (member x '(y)) 't nil))
(write (num 10 '(5 10 15 20)))
My output just outputs the nil instead of doing the function and I'm confused of what I am doing wrong.
Solution
(defun member-p (element list)
"Return T if the object is present in the list"
(not (null (member element list))))
The not/null pattern is equivalent to (if (member element list) t nil) but is more common.
In fact, you do not really need this separate function,
member is good enough.
The -p suffix stands for predicate, cf. integerp and upper-case-p.
Your code
You cannot quote lambda list elements, so you need to replace defun num (x 'y) with defun num (x y)
You need not quote t
Quoting '(y) makes no sense, replace it with y.
You do not need to write the function call, the REPL will do it for you.
See also
When to use ' (or quote) in Lisp?
Can you program without REPL on Lisp?
You are almost certainly expected to not just use member, but to write a function which does what you need (obviously in real life you would just use member because that's what it's for).
So. To know if an object is in a list:
if the list is empty it's not;
if the head of the list is equal to the object it is;
otherwise it is in the list if it's in the tail of the list.
And you turn this into a function very straightforwardly:
(defun num-in-list-p (n l)
;; is N in L: N is assumed to be a number, L a list of numbers
(cond ((null l)
nil)
((= n (first l))
t)
(t
(num-in-list-p n (rest l)))))
You could use the built in position function which will return the index of the number if it is in the list:
(position 1 '(5 4 3 2 1))
If you want to define your own function:
CL-USER> (defun our-member(obj lst)
(if(zerop (length lst))
nil
(if(equal(car lst)obj)
T
(our-member obj (cdr lst)))))
OUR-MEMBER
CL-USER> (our-member 1 '(5 4 3 2 1))
T
CL-USER> (our-member 99 '(1 2 3 4 5))
NIL
We can create a function called "our-member" that will take an object (in your case a number) and a list (in your case a list of numbers) as an argument. In this situation our "base-case" will be whether or not the length of the list is equal to zero. If it is and we still haven't found a match, we will return nil. Otherwise, we will check to see if the car of the list (the first element in the list) is equal to the obj that we passed. If so, we will return T (true). However, if it is not, we will call the function again passing the object and the cdr of the list (everything after the car of the list) to the function again, until there are no items left within the list. As you can see, The first example of a call to this function returns T, and the second example call returns NIL.
What makes this utility function a good example is that it essentially shows you the under workings of the member function as well and what is going on inside.
I am working on problem to get the occurence of Prime in a list in lisp.
Input:
Write a function (OccurencesOfPrimes < list >) which counts the number of primes in a (possibly nested) list.
Output: Example: (OccurencesOfPrimes (((1)(2))(5)(3)((8)3)) returns 4.
I am using the below code but getting the error like:
(
defun OccurencesOfPrimes (list)
(loop for i from 2 to 100
do ( setq isPrime t)
(loop for j from 2 to i
never (zerop (mod i j))
(setq isPrime f)
(break)
)
)
(if (setq isPrime t)
(append list i)
)
)
)
LOOP: illegal syntax near (SETQ ISPRIME F) in
(LOOP FOR J FROM 2 TO I NEVER (ZEROP (MOD I J)) (SETQ ISPRIME F) (BREAK)
)
Any help.
It is important to keep the format consistent with the expected conventions of the language. It helps when reading the code (in particular with other programmers), and can help you see errors.
Also, you should use an editor which, at the minimum, keep tracks of parentheses. In Emacs, when you put the cursor in the first opening parenthesis, the matching parenthesis is highlighted. You can spot that you have one additional parenthesis that serves no purpose.
(
defun OccurencesOfPrimes (list)
(loop for i from 2 to 100
do ( setq isPrime t)
(loop for j from 2 to i
never (zerop (mod i j))
(setq isPrime f)
(break)
)
)
(if (setq isPrime t)
(append list i)
)
) ;; <- end of defun
) ;; <- closes nothing
In Lisp, parentheses are for the computer, whereas indentation is for humans. Tools can automatically indent the code according to the structure (the parenthesis), and any discrepancy between what indentation you expect and the one being computed is a hint that your code is badly formed. If you look at the indentation of your expressions, you can see how deep you are in the form, and that alone helps you understand the code.
Symbol names are dash-separated, not camlCased.
Your code, with remarks:
(defun occurences-of-primes (list)
;; You argument is likely to be a LIST, given its name and the way
;; you call APPEND below. But you never iterate over the list. This
;; is suspicious.
(loop
for i from 2 to 100
do
(setq is-prime t) ;; setting an undeclared variable
(loop
for j from 2 to i
never (zerop (mod i j))
;; the following two forms are not expected here according
;; to LOOP's grammar; setting IS-PRIME to F, but F is not
;; an existing variable. If you want to set to false, use
;; NIL instead.
(setq is-prime f)
;; BREAK enters the debugger, maybe you wanted to use
;; LOOP-FINISH instead, but the NEVER clause above should
;; already be enough to exit the loop as soon as its
;; sub-expression evaluates to NIL.
(break)))
;; The return value of (SETQ X V) is V, so here your test would
;; always succeed.
(if (setq is-prime t)
;; Append RETURNS a new list, without modifying its
;; arguments. In particular, LIST is not modified. Note that "I"
;; is unknown at this point, because the bindings effective
;; inside the LOOP are not visible in this scope. Besides, "I"
;; is a number, not a list.
(append list i)))
Original question
Write one function which counts all the occurrences of a prime number in a (possibly nested) list.
Even though the homework questions says "write one function", it does not say that you should write one big function that compute everything at once. You could write one such big function, but if you split your problem into sub-problems, you will end with different auxiliary functions, which:
are simpler to understand (they do one thing)
can be reused to build other functions
The sub-problems are, for example: how to determine if a number is a prime? how to iterate over a tree (a.k.a. a possibly nested list)? how to count
the occurrences?
The basic idea is to write an "is-prime" function, iterate over the tree and call "is-prime" on each element; if the element is prime and was never seen before, add 1 to a counter, local to your function.
You can also flatten the input tree, to obtain a list, then sort the resulting
list; you iterate over the list while keeping track of the last
value seen: if the value is the same as the previous one, you
already know if the number is prime; if the previous number differs, then
you have to test if the number is prime first.
You could also abstract things a little more, and define a higher-order tree-walker function, which calls a function on each leaf of the tree. And write another higher-order function which "memoizes" calls: it wraps around a
function F so that if you call F with the same arguments as before,
it returns the result that was stored instead of recomputing it.
Example
I'll combine the above ideas because if you give that answer to a teacher you are likely to have to carefully explain what each part does (and if you can, great for you); this is not necessarily the "best" answer, but it covers a lot of things.
(defun tree-walk-leaves (tree function)
(typecase tree
(null nil)
(cons
(tree-walk-leaves (car tree) function)
(tree-walk-leaves (cdr tree) function))
(t (funcall function tree))))
(defun flatten (tree &optional keep-order-p)
(let ((flat nil))
(tree-walk-leaves tree (lambda (leaf) (push leaf flat)))
(if keep-order-p
(nreverse flat)
flat)))
(defun prime-p (n)
(or (= n 2)
(and (> n 2)
(oddp n)
(loop
for d from 3 upto (isqrt n) by 2
never (zerop (mod n d))))))
(defun count-occurences-of-prime (tree)
(count-if #'prime-p (remove-duplicates (flatten tree))))
(count-occurences-of-prime '(((1)(2))(5)(3)((8)3)))
=> 4
If, instead, you don't want to remove duplicates but count the multiple times a prime number occurs, you can do:
(count-if (memoize #'prime-p) (flatten tree))
... where memoize is:
(defun memoize (function &key (test #'equalp) (key #'identity))
(let ((hash (make-hash-table :test test)))
(lambda (&rest args)
(let ((args (funcall key args)))
(multiple-value-bind (result exists-p) (gethash args hash)
(values-list
(if exists-p
result
(setf (gethash args hash)
(multiple-value-list (apply function args))))))))))
(memoize is useless if there are no duplicates)
I have the following setup in Common Lisp. my-object is a list of 5 binary trees.
(defun make-my-object ()
(loop for i from 0 to 5
for nde = (init-tree)
collect nde))
Each binary tree is a list of size 3 with a node, a left child and a right child
(defstruct node
(min 0)
(max 0)
(ctr 0))
(defun vals (tree)
(car tree))
(defun left-branch (tree)
(cadr tree))
(defun right-branch (tree)
(caddr tree))
(defun make-tree (vals left right)
(list vals left right))
(defun init-tree (&key (min 0) (max 1))
(let ((n (make-node :min min :max max)))
(make-tree n '() '())))
Now, I was trying to add an element to one of the binary trees manually, like this:
(defparameter my-object (make-my-object))
(print (left-branch (car my-object))) ;; returns NIL
(let ((x (left-branch (car my-object))))
(setf x (cons (init-tree) x)))
(print (left-branch (car my-object))) ;; still returns NIL
The second call to print still returns NIL. Why is this? How can I add an element to the binary tree?
The first function is just:
(defun make-my-object ()
(loop repeat 5 collect (init-tree)))
Now you define a structure for node, but you use a list for the tree and my-object? Why aren't they structures?
Instead of car, cadr and caddr one would use first, second, third.
(let ((x (left-branch (car my-object))))
(setf x (cons (init-tree) x)))
You set the local variable x to a new value. Why? After the let the local variable is also gone. Why aren't you setting the left branch instead? You would need to define a way to do so. Remember: Lisp functions return values, not memory locations you can later set. How can you change the contents in a list? Even better: use structures and change the slot value. The structure (or even CLOS classes) has following advantages over plain lists: objects carry a type, slots are named, accessors are created, a make function is created, a type predicate is created, ...
Anyway, I would define structures or CLOS classes for node, tree and object...
Most of the code in this question isn't essential to the real problem here. The real problem comes in with the misunderstanding of this code:
(let ((x (left-branch (car my-object))))
(setf x (cons (init-tree) x)))
We can see the same kind of behavior without user-defined structures of any kind:
(let ((cell (cons 1 2)))
(print cell) ; prints (1 . 2)
(let ((x (car cell)))
(setf x 3)
(print cell))) ; prints (1 . 2)
If you understand why both print statements produce (1 . 2), then you've got enough to understand why your own code isn't doing what you (previously) expected it to do.
There are two variables in play here: cell and x. There are three values that we're concerned with 1, 2, and the cons-cell produced by the call (cons 1 2). Variables in Lisp are often called bindings; the variable, or name, is bound to a value. The variable cell is bound to the the cons cell (1 . 2). When we go into the inner let, we evaluate (car cell) to produce the value 1, which is then bound to the variable x. Then, we assign a new value, 3, to the variable x. That doesn't modify the cons cell that contains the value that x was originally bound to. Indeed, the value that was originally bound to x was produced by (car cell), and once the call to (car cell) returned, the only value that mattered was 1.
If you have some experience in other programming languages, this is directly analogous to something like
int[] array = ...;
int x = array[2]; // read from the array; assign result to x
x = 42; // doesn't modify the array
If you want to modify a structure, you need to setf the appropriate part of the structure. E.g.:
(let ((cell (cons 1 2)))
(print cell) ; prints (1 . 2)
(setf (car cell) 3)
(print cell)) ; prints (3 . 2)
I have to write a program in Lisp that returns the first item of a list if it contains an even number of elements, and the last if it contains an odd number of elements. I need a little advice on where to start? I don't need whole program.
You can get the length of a list with length.
(length '(a b c)) ;; 3
You can then go and check that number against the predicate function evenp, which returns T or NIL depending on if the argument is even or not.
(evenp 1) ;; NIL
(evenp 2) ;; T
The function first returns the first element of a list.
(first '(a b c)) ;; A
The function last returns the last cons of a list, so you'll have to unwrap the value using FIRST.
(last '(a b c)) ;; (C)
(first (last '(a b c))) ;; C
You could then combine these into a function like so:
(defun get-first-if-even-length (list)
(if (evenp (length list))
(first list)
(first (last list))))
This function returns the first or the last element in the list, depending if its length is even or not.
I have some problem using accessor function nth. I pass a list to some function and make new binding to an element of the list in the function with nth, then when I call the list out of the function, it is modified, and it's not what I want! What happens?
Some examples
(defun test (x) (incf x)) => TEST
(setq a 1) => 1
(test a) => 2
a => 1
I understand what's going on above, but if we change everything to lists, something happens that I can't understand
(defun test (x) (incf (nth 0 x))) => TEST
(setq a '(1)) => (1)
(test a) => 2
a => (2)
I expected a to be (1), why it has been modified? I also tried other functions like car and first, result is the same.
PS, I tried it in Lispworks and SBCL, same result.
(defun test (x) (incf x)) => TEST
(setq a 1) => 1
(test a) => 2
a => 1
You pass 1 to test. Within test you modified the local variable x. a is not changed and can't be changed that way - we pass the value of a not a reference to a.
(defun test (x) (incf (nth 0 x))) => TEST
(setq a '(1)) => (1)
(test a) => 2
a => (2)
You pass the list (1) to test. The list is not copied. The local variable x points to the first cons cell in the list. You then modify the car of the first cons cell to 2. Since the list is not copied, you modify the passed list. a also points to the first cons cell of that list. So it is also (2).
If you don't want anything to be modified, don't use incf. Use 1+. The only reason to use incf is because you want its side-effect.
As to why this is happening, arguments are evaluated before being passed to a function. When you call test with a being 1, you are passing the value 1, which cannot be modified. When a resolves to a list, you are passing a list, which can be setf'd all over the shop, if you've chosen to use destructive functions.
See the documentation on nth. nth returns a place that setq can then operate on.
nth may be used to specify a place to setf. Specifically,
(setf (nth n list) new-object) == (setf (car (nthcdr n list)) new-object)