I need to compare two strings ignoring the case for the assoc :test function. I know that I can easily write the function like so:
(defun cistring= (str1 str2)
(string= (string-downcase str1)
(string-downcase str2)))
However I was wondering: Is there is a built-in case insensitive string=? Or maybe I just cannot find any?
STRING-EQUAL compares strings case insensitively (characters are CHAR-EQUAL).
CL-USER> (string-equal "foo" "FOO")
T
CL-USER> (string-equal "foo" "FOOBAR" :end2 3)
T
Related
I'm reading a file char by char and constructing a list which is consist of list of letters of words. I did that but when it comes to testing it prints out NIL. Also outside of test function when i print out list, it prints nicely. What is the problem here? Is there any other meaning of LET keyword?
This is my read fucntion:
(defun read-and-parse (filename)
(with-open-file (s filename)
(let (words)
(let (letter)
(loop for c = (read-char s nil)
while c
do(when (char/= c #\Space)
(if (char/= c #\Newline) (push c letter)))
do(when (or (char= c #\Space) (char= c #\Newline) )
(push (reverse letter) words)
(setf letter '())))
(reverse words)
))))
This is test function:
(defun test_on_test_data ()
(let (doc (read-and-parse "document2.txt"))
(print doc)
))
This is input text:
hello
this is a test
You're not using let properly. The syntax is:
(let ((var1 val1)
(var2 val2)
...)
body)
If the initial value of the variable is NIL, you can abbreviate (varN nil) as just varN.
You wrote:
(let (doc
(read-and-parse "document2.txt"))
(print doc))
Based on the above, this is using the abbreviation, and it's equivalent to:
(let ((doc nil)
(read-and-parse "document2.txt"))
(print doc))
Now you can see that this binds doc to NIL, and binds the variable read-and-parse to "document2.txt". It never calls the function. The correct syntax is:
(let ((doc (read-and-parse "document2.txt")))
(print doc))
Barmar's answer is the right one. For interest, here is a version of read-and-parse which makes possibly-more-idiomatic use of loop, and also abstracts out the 'is the character white' decision since this is something which is really not usefully possible in portable CL as the standard character repertoire is absurdly poor (there's no tab for instance!). I'm sure there is some library available via Quicklisp which deals with this better than the below.
I think this is fairly readable: there's an outer loop which collects words, and an inner loop which collects characters into a word, skipping over whitespace until it finds the next word. Both use loop's collect feature to collect lists forwards. On the other hand, I feel kind of bad every time I use loop (I know there are alternatives).
By default this collects the words as lists of characters: if you tell it to it will collect them as strings.
(defun char-white-p (c)
;; Is a character white? The fallback for this is horrid, since
;; tab &c are not a standard characters. There must be a portability
;; library with a function which does this.
#+LispWorks (lw:whitespace-char-p c)
#+CCL (ccl:whitespacep c) ;?
#-(or LispWorks CCL)
(member char (load-time-value
(mapcan (lambda (n)
(let ((c (name-char n)))
(and c (list c))))
'("Space" "Newline" "Page" "Tab" "Return" "Linefeed"
;; and I am not sure about the following, but, well
"Backspace" "Rubout")))))
(defun read-and-parse (filename &key (as-strings nil))
"Parse a file into a list of words, splitting on whitespace.
By default the words are returned as lists of characters. If
AS-STRINGS is T then they are coerced to strings"
(with-open-file (s filename)
(loop for maybe-word = (loop with collecting = nil
for c = (read-char s nil)
;; carry on until we hit EOF, or we
;; hit whitespace while collecting a
;; word
until (or (not c) ;EOF
(and collecting (char-white-p c)))
;; if we're not collecting and we see
;; a non-white character, then we're
;; now collecting
when (and (not collecting) (not (char-white-p c)))
do (setf collecting t)
when collecting
collect c)
while (not (null maybe-word))
collect (if as-strings
(coerce maybe-word 'string)
maybe-word))))
I'm following the syntax as it is in my book "The land of lisp" and the let version only returns nil when passed *string*. Whereas the "setq" version returns the reversed version of string.
(defparameter *string* "a b c")
(defun reverse-string (string)
(let (reversed (string))))
(defun setq-reverse-string (string)
(setq reversed (reverse string)))
The syntax of LET is:
(LET ((var1 val1)
(var2 val2)
...)
body)
In place of (varN valN) you can just put varN, which is shorthand for (varN nil). You can also omit valN, in which case it defaults to nil.
So your code is equivalent to:
(defun reverse-string (string)
(let ((reversed nil)
(string nil))))
You're missing a level of parentheses to do what you want:
(defun reverse-string (string)
(let ((reversed (string)))))
You're also missing the call to reverse, and returning the variable
(defun reverse-string (string)
(let ((reversed (reverse string)))
reversed))
I am trying to write a simple parser in Racket, using the parser-tools. I got a behaviour which I could not explain (I am a Racket newbie, perhaps that is trivial).
Consider the following code:
#lang racket
(require parser-tools/yacc
parser-tools/lex
(prefix-in : parser-tools/lex-sre))
(define-tokens value-tokens ;;token which have a value
(STRING-VALUE ))
(define-empty-tokens op-tokens ;;token without a values
(EOF))
(define-lex-abbrevs ;;abbreviation
[STRING (:+ (:or (:/ "a" "z") (:/ "A" "Z") (:/ "0" "9") "." "_" "-"))]
)
(define lex-token
(lexer
[(eof) 'EOF]
;; recursively call the lexer on the remaining input after a tab or space. Returning the "1+1")
;; result of that operation. This effectively skips all whitespace.
[(:or #\tab #\space #\newline)
(lex-token input-port)]
[(:seq STRING) (token-STRING-VALUE lexeme)]
))
(define test-parser
(parser
(start query)
(end EOF)
(tokens value-tokens op-tokens)
(error (λ(ok? name value) (printf "Couldn't parse: ~a\n" name)))
(grammar
(query [(STRING-VALUE) $1])
)))
(define s (open-input-string
"abcd123"))
(define res
(test-parser (lambda () (lex-token s))))
(define str "abcd123")
After those definitions, res is a string:
> (string? res)
#t
and so is str.
If I try to execute a comparison with the "abcd123" string I get two different results:
> (eq? res "abcd123")
#f
> (eq? str "abcd123")
#t
Why is that? What am I missing here?
You should compare strings with equal?.
Like many programming languages there is a difference between same object and two objects that look the same. You probably should have a look at the Question about the difference between eq?, eqv?, equal? and =
Racket has string=? which compares strings specifically and might be faster than the less specific equal?.
Is there some function similar to PHP's str_replace in Common Lisp?
http://php.net/manual/en/function.str-replace.php
There is a library called cl-ppcre:
(cl-ppcre:regex-replace-all "qwer" "something to qwer" "replace")
; "something to replace"
Install it via quicklisp.
I think there is no such function in the standard. If you do not want to use a regular expression (cl-ppcre), you could use this:
(defun string-replace (search replace string &optional count)
(loop for start = (search search (or result string)
:start2 (if start (1+ start) 0))
while (and start
(or (null count) (> count 0)))
for result = (concatenate 'string
(subseq (or result string) 0 start)
replace
(subseq (or result string)
(+ start (length search))))
do (when count (decf count))
finally (return-from string-replace (or result string))))
EDIT: Shin Aoyama pointed out that this does not work for replacing, e.g., "\"" with "\\\"" in "str\"ing". Since I now regard the above as rather cumbersome I should propose the implementation given in the Common Lisp Cookbook, which is much better:
(defun replace-all (string part replacement &key (test #'char=))
"Returns a new string in which all the occurences of the part
is replaced with replacement."
(with-output-to-string (out)
(loop with part-length = (length part)
for old-pos = 0 then (+ pos part-length)
for pos = (search part string
:start2 old-pos
:test test)
do (write-string string out
:start old-pos
:end (or pos (length string)))
when pos do (write-string replacement out)
while pos)))
I especially like the use of with-output-to-string, which generally performs better than concatenate.
If the replacement is only one character, which is often the case, you can use substitute:
(substitute #\+ #\Space "a simple example") => "a+simple+example"
Given a list such as
(list "foo" "bar" nil "moo" "bar" "moo" nil "affe")
how would I build a new list with the duplicate strings removed, as well as the nils stripped, i.e.
(list "foo" "bar" "moo" "affe")
The order of the elements needs to be preserved - the first occurence of a string may not be removed.
The lists I'm dealing with here are short, so there's no need to use anything like a hash table for the uniqueness check, although doing so certainly wouldn't hurt either. However, using cl functionality is not a viable option.
Try "Sets and Lists" in the "Lists" section of the Emacs Lisp Reference Manual:
(delq nil (delete-dups (list "foo" "bar" nil "moo" "bar" "moo" nil "affe")))
The Common Lisp package contains many list manipulation functions, in particular remove-duplicates.
(require 'cl)
(remove-duplicates (list "foo" "bar" nil "moo" "bar" "moo" nil "affe")
:test (lambda (x y) (or (null y) (equal x y)))
:from-end t)
Yes, I realize you said you didn't want to use cl. But I'm still mentioning this as the right way to do it for other people who might read this thread.
(Why is cl not viable for you anyway? It's been shipped with Emacs for about 20 years now, not counting less featured past incarnations.)
If you use dash.el library, that's all you need:
(-distinct (-non-nil '(1 1 nil 2 2 nil 3)) ; => (1 2 3)
dash.el is written by Magnar Sveen and it's a great list manipulation library with many functions for all kinds of tasks. I recommend to install it if you write lots of Elisp code. Function -distinct removes duplicate elements in a list, -non-nil removes nil elements. While the above code is sufficient, below I describe an alternative approache, so feel free to ignore the rest of the post.
-non-nil was added in version 2.9, so if for some reason you have to use earlier versions, another way to achieve the same is to use -keep with built-in identity function, which just returns whatever it is given: (identity 1) ; => 1. The idea is that -keep keeps only elements, for which the predicate returns true (“non-nil” in Lisp jargon). identity obviously returns non-nil only for whatever values that are not nil:
(-distinct (-keep 'identity '(1 1 nil 2 2 nil 3)) ; => (1 2 3)
This is a short example:
(delete-duplicates '("~/.emacs.d" "~/.emacs.d") :test #'string-equal) ;; '("~/emacs.d")
Basically you use the :test keyword to select the function string-equal to test if the elements are duplicated.
Else the default function test doesn't check string equality.
Here ya go:
(defun strip-duplicates (list)
(let ((new-list nil))
(while list
(when (and (car list) (not (member (car list) new-list)))
(setq new-list (cons (car list) new-list)))
(setq list (cdr list)))
(nreverse new-list)))