load on GPU gradually decreases using Tensorflow's queue - queue

I've a large number of pickled data stored on my hard disk. I've a generator function that reads these pickled files in batch (batch_size = 512) and I'm using tensorflow's queue to speed-up the process. currently, my queue_size is 4096 and I'm using 6 threads as I've 6 physical cores. When I run the code and monitor my GPU load (I'm using TitanX), at the beginning, it looks OK:
But over time, I see less load on my GPU:
I also see increase in execution time per epoch:
Epoch 1 | Exec. time: 1646.523872
Epoch 2 | Exec. time: 1760.770192
Epoch 3 | Exec. time: 1861.450039
Epoch 4 | Exec. time: 1952.52812
Epoch 5 | Exec. time: 2167.598431
Epoch 6 | Exec. time: 2278.203603
Epoch 7 | Exec. time: 2320.280606
Epoch 8 | Exec. time: 2467.036160
Epoch 9 | Exec. time: 2584.932837
Epoch 10 | Exec. time: 2736.121618
...
Epoch 20 | Exec. time: 3841.635191
which the GPU load that I observe kind of explains it.
Now, the question is why is this happening? Is this a bug in tensorflow's queue? Have I done something wrong?! I'm using tensorflow ver. 1.4 and if it helps this is the way I defined my queue, enqueue and dequeue:
def get_train_queue(batch_size, data_generator, queue_size, num_threads):
# get train queue to parallelize loading data
q = tf.FIFOQueue(capacity = queue_size, dtypes = [tf.float32, tf.float32, tf.float32, tf.float32],
shapes = [[batch_size, x_height, x_width, num_channels],
[batch_size, num_classes],
[batch_size, latent_size],
[batch_size]])
batch = next(data_generator)
batch_z = np.random.uniform(-1.0, 1.0, size = (batch_size, latent_size))
mask = get_labled_mask(labeled_rate, batch_size)
enqueue_op = q.enqueue((batch[0], batch[1], batch_z, mask))
qr = tf.train.QueueRunner(q, [enqueue_op] * num_threads)
tf.train.add_queue_runner(qr)
return q
and
def train_per_batch(sess, q, train_samples_count, batch_size, parameters, epoch):
# train_per_batch and get train loss and accuracy
t_total = 0
for iteration in range(int(train_samples_count / batch_size)):
t_start = time.time()
data = q.dequeue()
feed_dictionary = {parameters['x']: sess.run(data[0]),
parameters['z']: sess.run(data[2]),
parameters['label']: sess.run(data[1]),
parameters['labeled_mask']: sess.run(data[3]),
parameters['dropout_rate']: dropout,
parameters['d_init_learning_rate']: D_init_learning_rate,
parameters['g_init_learning_rate']: G_init_learning_rate,
parameters['is_training']: True}
sess.run(parameters['D_optimizer'], feed_dict = feed_dictionary)
sess.run(parameters['G_optimizer'], feed_dict = feed_dictionary)
train_D_loss = sess.run(parameters['D_L'], feed_dict = feed_dictionary)
train_G_loss = sess.run(parameters['G_L'], feed_dict = feed_dictionary)
t_total += (time.time() - t_start)
I also tried tf.data.Dataset.from_generator() recommended by tensorflow 1.4 as:
train_dataset = tf.data.Dataset.from_generator(data_generator_training_from_pickles,
(tf.float32, tf.float32, tf.float32, tf.float32, tf.float32, tf.float32),
([batch_size, x_height, x_width, num_channels],
[batch_size, num_classes],
[batch_size, latent_size],
[batch_size])))
and then using:
def train_per_batch(sess, train_dataset, train_samples_count, batch_size, parameters, epoch):
# train_per_batch and get train loss and accuracy
t_total = 0
for iteration in range(int(train_samples_count / batch_size)):
t_start = time.time()
data = train_dataset.make_one_shot_iterator().get_next()
feed_dictionary = {parameters['x']: sess.run(data[0]),
parameters['z']: sess.run(data[2]),
parameters['label']: sess.run(data[1]),
parameters['labeled_mask']: sess.run(data[3]),
parameters['dropout_rate']: dropout,
parameters['d_init_learning_rate']: D_init_learning_rate,
parameters['g_init_learning_rate']: G_init_learning_rate,
parameters['is_training']: True}
sess.run(parameters['D_optimizer'], feed_dict = feed_dictionary)
sess.run(parameters['G_optimizer'], feed_dict = feed_dictionary)
train_D_loss = sess.run(parameters['D_L'], feed_dict = feed_dictionary)
train_G_loss = sess.run(parameters['G_L'], feed_dict = feed_dictionary)
t_total += (time.time() - t_start)
It's the worst. There is no queueing obviously:

Related

ORTOOLS - CPSAT - Objective to minimize a value by intervals

I my model in ORTools CPSAT, I am computing a variable called salary_var (among others). I need to minimize an objective. Let’s call it « taxes ».
to compute the taxes, the formula is not linear but organised this way:
if salary_var below 10084, taxes corresponds to 0%
between 10085 and 25710, taxes corresponds to 11%
between 25711 and 73516, taxes corresponds to 30%
and 41% for above
For example, if salary_var is 30000 then, taxes are:
(25710-10085) * 0.11 + (30000-25711) * 0.3 = 1718 + 1286 = 3005
My question: how can I efficiently code my « taxes » objective?
Thanks for your help
Seb
This task looks rather strange, there is not much context and some parts of the task might touch some not-so-nice areas of finite-domain based solvers (large domains or scaling / divisions during solving).
Therefore: consider this as an idea / template!
Code
from ortools.sat.python import cp_model
# Data
INPUT = 30000
INPUT_UB = 1000000
TAX_A = 11
TAX_B = 30
TAX_C = 41
# Helpers
# new variable which is constrained to be equal to: given input-var MINUS constant
# can get negative / wrap-around
def aux_var_offset(model, var, offset):
aux_var = model.NewIntVar(-INPUT_UB, INPUT_UB, "")
model.Add(aux_var == var - offset)
return aux_var
# new variable which is equal to the given input-var IFF >= 0; else 0
def aux_var_nonnegative(model, var):
aux_var = model.NewIntVar(0, INPUT_UB, "")
model.AddMaxEquality(aux_var, [var, model.NewConstant(0)])
return aux_var
# Model
model = cp_model.CpModel()
# vars
salary_var = model.NewIntVar(0, INPUT_UB, "salary")
tax_component_a = model.NewIntVar(0, INPUT_UB, "tax_11")
tax_component_b = model.NewIntVar(0, INPUT_UB, "tax_30")
tax_component_c = model.NewIntVar(0, INPUT_UB, "tax_41")
# constraints
model.AddMinEquality(tax_component_a, [
aux_var_nonnegative(model, aux_var_offset(model, salary_var, 10085)),
model.NewConstant(25710 - 10085)])
model.AddMinEquality(tax_component_b, [
aux_var_nonnegative(model, aux_var_offset(model, salary_var, 25711)),
model.NewConstant(73516 - 25711)])
model.Add(tax_component_c == aux_var_nonnegative(model,
aux_var_offset(model, salary_var, 73516)))
tax_full_scaled = tax_component_a * TAX_A + tax_component_b * TAX_B + tax_component_c * TAX_C
# Demo
model.Add(salary_var == INPUT)
solver = cp_model.CpSolver()
status = solver.Solve(model)
print(list(map(lambda x: solver.Value(x), [tax_component_a, tax_component_b, tax_component_c, tax_full_scaled])))
Output
[15625, 4289, 0, 300545]
Remarks
As implemented:
uses scaled solving
produces scaled solution (300545)
no fiddling with non-integral / ratio / rounding stuff BUT large domains
Alternative:
Maybe something around AddDivisionEquality
Edit in regards to Laurents comments
In some scenarios, solving the scaled problem but being able to reason about the real unscaled values easier might make sense.
If i interpret the comment correctly, the following would be a demo (which i was not aware of and it's cool!):
Updated Demo Code (partial)
# Demo -> Attempt of demonstrating the objective-scaling suggestion
model.Add(salary_var >= 30000)
model.Add(salary_var <= 40000)
model.Minimize(salary_var)
model.Proto().objective.scaling_factor = 0.001 # DEFINE INVERSE SCALING
solver = cp_model.CpSolver()
solver.parameters.log_search_progress = True # SCALED BACK OBJECTIVE PROGRESS
status = solver.Solve(model)
print(list(map(lambda x: solver.Value(x), [tax_component_a, tax_component_b, tax_component_c, tax_full_scaled])))
print(solver.ObjectiveValue()) # SCALED BACK OBJECTIVE
Output (excerpt)
...
...
#1 0.00s best:30 next:[30,29.999] fixed_bools:0/1
#Done 0.00s
CpSolverResponse summary:
status: OPTIMAL
objective: 30
best_bound: 30
booleans: 1
conflicts: 0
branches: 1
propagations: 0
integer_propagations: 2
restarts: 1
lp_iterations: 0
walltime: 0.0039022
usertime: 0.0039023
deterministic_time: 8e-08
primal_integral: 1.91832e-07
[15625, 4289, 0, 300545]
30.0

Accuracy is not increasing, though loss is decreasing

I am feeding cnn features into gpflow model. I am writing the chunks of code from my program here. I am using tape.gradient with Adam optimizer (scheduled lr). My accuracy gets stuck on 47% and surprisingly , my loss still gets reducing. Its very weird. I have debugged the program. CNN features are ok but gp model is not learning .Please can you check the training loop and let me know where am I wrong.
def optimization_step(gp_model: gpflow.models.SVGP, image_data,labels):
with tf.GradientTape(watch_accessed_variables=False)as tape:
tape.watch(gp_model.trainable_variables)
cnn_feat = cnn_model(image_data,training=False)
cnn_feat=tf.cast(cnn_feat,dtype=default_float())
labels=tf.cast(labels,dtype=np.int64)
data=(cnn_feat, labels)
loss = gp_model.training_loss(data)
gp_grads=tape.gradient(loss, gp_model.trainable_variables)
gp_optimizer.apply_gradients(zip(gp_grads, gp_model.trainable_variables))
return loss, cnn_feat
the loop for training is
def simple_training_loop(gp_model: gpflow.models.SVGP, epochs: int = 3, logging_epoch_freq: int = 10):
total_loss = []
features=[]
tf_optimization_step = tf.function(optimization_step, autograph=False)
for epoch in range(epochs):
lr.assign(max(args.learning_rate_clip, args.learning_rate * (args.decay_rate ** epoch)))
data_loader.shuffle_data(args.is_training)
for b in range(data_loader.n_batches):
batch_x, batch_y= data_loader.next_batch(b)
batch_x=tf.convert_to_tensor(batch_x)
batch_y=tf.convert_to_tensor(batch_y)
loss,features_CNN=tf_optimization_step(gp_model, batch_x,batch_y)
I am restoring weights for CNN from checkpoints saved during transfer learning.
With more epochs , loss continue to decrease but accuracy starts decreasing as well.
The gp model declaration is as follows
kernel = gpflow.kernels.Matern32() + gpflow.kernels.White(variance=0.01)
invlink = gpflow.likelihoods.RobustMax(C)
likelihood = gpflow.likelihoods.MultiClass(C, invlink=invlink)
the test Function
cnn_feat=cnn_model(test_x,training=False)
cnn_feat = tf.cast(cnn_feat, dtype=default_float())
mean, var = gp_model.predict_f(cnn_feat)
preds = np.argmax(mean, 1).reshape(test_labels.shape)
correct = (preds == test_labels.numpy().astype(int))
acc = np.average(correct.astype(float)) * 100
Can you please just check that whether the training loop is correctly written
The training loop looks fine. However, there are bits that should be modified for clarity and for optimisation sake.
def simple_training_loop(gp_model: gpflow.models.SVGP, epochs: int = 3, logging_epoch_freq: int = 10):
total_loss = []
features=[]
#tf.function
def compute_cnn_feat(x: tf.Tensor) -> tf.Tensor:
return tf.cast(cnn_model(x, training=False), dtype=default_float())
#tf.function
def optimization_step(cnn_feat: tf.Tensor, labels: tf.Tensor): # **Change 1.**
with tf.GradientTape(watch_accessed_variables=False) as tape:
tape.watch(gp_model.trainable_variables)
data = (cnn_feat, labels)
loss = gp_model.training_loss(data)
gp_grads = tape.gradient(loss, gp_model.trainable_variables) # **Change 2.**
gp_optimizer.apply_gradients(zip(gp_grads, gp_model.trainable_variables))
return loss
for epoch in range(epochs):
lr.assign(max(args.learning_rate_clip, args.learning_rate * (args.decay_rate ** epoch)))
data_loader.shuffle_data(args.is_training)
for b in range(data_loader.n_batches):
batch_x, batch_y= data_loader.next_batch(b)
batch_x = tf.convert_to_tensor(batch_x)
batch_y = tf.convert_to_tensor(batch_y, dtype=default_float())
cnn_feat = compute_cnn_feat(batch_x) # **Change 3.**
loss = optimization_step(cnn_feat, batch_y)
Change 1. Signature of a function that you wrap with tf.function should not have mutable objects.
Change 2. The gradient tape will track all computations inside the context manager, including the computation of the gradients i.e. tape.gradient(...). In turn, that means your code performs an unnecessary calculation.
Change 3. For the same reason as in "Change 2." I moved the CNN feature extraction outside of the gradient tape.

Loss is not decreasing at all for RNN

I have already tried to change the weights initialization parameters, learning rate and the batch size and the activation functions to ReLu
Still no decrease in the loss
This is the code:
import torch
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.autograd import Variable
import numpy as np
no_time_steps = 28
input_size = 28
hidden_size = 30
output_size = 10
batch_size = 100
num_epochs = 2
learning_rate = 0.01
dtype = torch.DoubleTensor
# MNIST Dataset
train_dataset = dsets.MNIST(root='./data/',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = dsets.MNIST(root='./data/',
train=False,
transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
class RNN(torch.nn.Module):
def __init__(self,input_size,hidden_size,output_size,batch_size):
super(RNN, self).__init__()
self.input_size=input_size
self.hidden_size=hidden_size
self.output_size=output_size
self.wxh=Variable(torch.randn(input_size,hidden_size).type(dtype)*0.1,requires_grad=True)
self.whh=Variable(torch.randn(hidden_size,hidden_size).type(dtype)*0.1,requires_grad=True)
self.why=Variable(torch.randn(hidden_size,output_size).type(dtype)*0.1,requires_grad=True)
self.by=Variable(torch.Tensor(batch_size,output_size).type(dtype).zero_(),requires_grad=True)
self.bh=Variable(torch.Tensor(batch_size,hidden_size).type(dtype).zero_(),requires_grad=True)
self.mWxh= torch.zeros_like(self.wxh)
self.mWhh= torch.zeros_like(self.whh)
self.mWhy= torch.zeros_like(self.why)
self.mbh= torch.zeros_like(self.bh)
self.mby= torch.zeros_like(self.by)
self.dwxh, self.dwhh, self.dwhy = torch.zeros_like(self.wxh), torch.zeros_like(self.whh), torch.zeros_like(self.why)
self.dbh, self.dby = torch.zeros_like(self.bh), torch.zeros_like(self.by)
def hidden_init(self,batch_size):
self.hidden={}
self.hidden[0]=Variable(torch.Tensor(batch_size,hidden_size).type(dtype).zero_())
def tanh(self,value):
return (torch.exp(value)-torch.exp(-value))/(torch.exp(value)+torch.exp(-value))
def parameter(self):
self.params = torch.nn.ParameterList([torch.nn.Parameter(self.wxh.data),torch.nn.Parameter(self.whh.data),torch.nn.Parameter(self.why.data),torch.nn.Parameter(self.bh.data),torch.nn.Parameter(self.by.data)])
return self.params
def grad_data(self):
print(self.dwxh,self.dwhy)
def softmax(self,value):
return torch.exp(value) / torch.sum(torch.exp(value))
def updatess(self,lr):
for param, dparam, mem in zip([self.wxh, self.whh, self.why, self.bh, self.by],
[self.dwxh,self.dwhh,self.dwhy,self.dbh,self.dby],
[self.mWxh, self.mWhh, self.mWhy, self.mbh, self.mby]):
mem.data += dparam.data * dparam.data
param.data += -learning_rate * dparam.data / torch.sqrt(mem.data + 1e-8)
def forward(self,inputs,batch_size,no_time_steps,labels):
self.hidden_init(batch_size)
inputs=Variable(inputs.type(dtype))
self.output=Variable(torch.Tensor(no_time_steps,batch_size,self.output_size).type(dtype))
for t in xrange(no_time_steps):
if t==0:
self.hidden[t]=torch.matmul(self.hidden[0],self.whh)
#print 'time ',t#,"Inputs",inputs[:,t,:],"Weights",self.wxh
#print "hidden MATRIX",inputs[:,t,:]
self.hidden[t]+=torch.matmul(inputs[:,t,:],self.wxh)
self.hidden[t]=self.tanh(self.hidden[t]+self.bh)
#print 'time ',t#,"Inputs",inputs[:,t,:],"Weights",self.wxh
#print "HIDDEN MATRIX",self.hidden[t]
else:
self.hidden[t]=torch.matmul(self.hidden[t-1],self.whh)#+torch.matmul(self.hidden[t-1],self.whh)
#print 'time ',t#,"Inputs",inputs[:,t,:],"Weights",self.wxh
self.hidden[t]+=torch.matmul(inputs[:,t,:],self.wxh)
self.hidden[t]=self.tanh(self.hidden[t]+self.bh)
#print 'time ',t#,"Inputs",inputs[:,t,:],"Weights",self.wxh
#print "############################################################################################"
#print "hidden MATRIX",self.hidden[t]
self.output[t]=self.softmax(torch.matmul(self.hidden[t],self.why)+self.by)
#print "OUTPUT MATRIX",self.output[t]
return self.output
def backward(self,loss,label,inputs):
inputs=Variable(inputs.type(dtype))
self.dhnext = torch.zeros_like(self.hidden[0])
self.dy=self.output[27].clone()
#print(self.dy.shape)
self.dy[:,int(label[0])]=self.dy[:,int(label[0])]-1
#print(self.dy.shape)
self.dwhy += torch.matmul( self.hidden[27].t(),self.dy)
self.dby += self.dy
for t in reversed(xrange(no_time_steps)):
self.dh = torch.matmul(self.dy,self.why.t()) + self.dhnext # backprop into h
self.dhraw = (1 - self.hidden[t] * self.hidden[t]) * self.dh # backprop through tanh nonlinearity
self.dbh += self.dhraw #derivative of hidden bias
self.dwxh += torch.matmul(inputs[:,t,:].t(),self.dhraw) #derivative of input to hidden layer weight
self.dwhh += torch.matmul( self.hidden[t-1].t(),self.dhraw) #derivative of hidden layer to hidden layer weight
self.dhnext = torch.matmul(self.dhraw,self.whh.t())
rnn=RNN(input_size,hidden_size,output_size,batch_size)
def onehot(values,shape):
temp=torch.Tensor(shape).zero_()
for k,j in enumerate(labels):
temp[k][int(j)]=1
return Variable(temp)
for epoch in range(5):
for i, (images, labels) in enumerate(train_loader):
images = images.view(-1, no_time_steps, input_size)
outputs = rnn(images,batch_size,no_time_steps,labels)
labels = Variable(labels.double())
output=outputs[27,:,:]
labelss=onehot(labels,output.shape)
#print output
loss=-torch.mul(torch.log(output),labelss.double())
#print loss
loss=torch.sum(loss)
#print(labels)
rnn.backward(loss,labels,images)
rnn.updatess(0.01)
if i==1110:
break
if (i+1) % 100 == 0:
print ('Epoch [%d/%d], Step [%d/%d], Loss: %.4f'
%(epoch+1, num_epochs, i+1, len(train_dataset)//batch_size, loss.data[0]))
OUTPUT:
Epoch [1/2], Step [100/600], Loss: 714.8081
Epoch [1/2], Step [200/600], Loss: 692.7232
Epoch [1/2], Step [300/600], Loss: 700.1103
Epoch [1/2], Step [400/600], Loss: 698.5468
Epoch [1/2], Step [500/600], Loss: 702.1227
Epoch [1/2], Step [600/600], Loss: 705.9571
It is difficult to find a bug in such code. I would suggest simplifying things a little:
1) pytorch takes care of parameters automatically if you do self.wxh=Parameter instead of self.wxh=Variable, so change all your Variable to Parameter. And delete your parameter functions.
2) pytorch takes care of the backward function automatically if you defined the forward function with functions which have a defined backward function. So delete your backward function in case there is a bug in it.
3) Use loss=torch.mean(loss) instead of loss=torch.sum(loss) because then your learning rate is independent of batch size.
4) Using backward is kind of tricky in pytorch, so use an optimizer instead:
optimizer = torch.optim.SGD(rnn.parameters(), lr=0.03)
for epoch in range(5):
...
optimizer.zero_grad()
loss.backward()
optimizer.step()
If after all this, it still doesn't learn. There might be a problem in your RNN. So try to use a pytorch predefined RNN to see if your dataset is even learnable with an RNN.
If doing this solved the problem. You can than undo the above changes one by one, to discover what the problem was.

Clarification between Epoch and iteration

This answer points to the difference between an Epoch and an iteration while training a neural network. However, when I look at the source code for the solver API in the Stanford CS231n course (and I'm assuming this is the case for most libraries out there as well), during each iteration, batch_size number of examples are randomly selected with replacement. Thus, there is no guarantee that all examples would been seen during each epoch is there?
Does an epoch then mean that all examples would be seen in expectation? Or am I understanding this wrong?
Relevant Source Code:
def _step(self):
"""
Make a single gradient update. This is called by train() and should not
be called manually.
"""
# Make a minibatch of training data
num_train = self.X_train.shape[0]
batch_mask = np.random.choice(num_train, self.batch_size)
X_batch = self.X_train[batch_mask]
y_batch = self.y_train[batch_mask]
# Compute loss and gradient
loss, grads = self.model.loss(X_batch, y_batch)
self.loss_history.append(loss)
# Perform a parameter update
for p, w in self.model.params.iteritems():
dw = grads[p]
config = self.optim_configs[p]
next_w, next_config = self.update_rule(w, dw, config)
self.model.params[p] = next_w
self.optim_configs[p] = next_config
def train(self):
"""
Run optimization to train the model.
"""
num_train = self.X_train.shape[0]
iterations_per_epoch = max(num_train / self.batch_size, 1)
num_iterations = self.num_epochs * iterations_per_epoch
for t in xrange(num_iterations):
self._step()
# Maybe print training loss
if self.verbose and t % self.print_every == 0:
print '(Iteration %d / %d) loss: %f' % (
t + 1, num_iterations, self.loss_history[-1])
# At the end of every epoch, increment the epoch counter and decay the
# learning rate.
epoch_end = (t + 1) % iterations_per_epoch == 0
if epoch_end:
self.epoch += 1
for k in self.optim_configs:
self.optim_configs[k]['learning_rate'] *= self.lr_decay
# Check train and val accuracy on the first iteration, the last
# iteration, and at the end of each epoch.
first_it = (t == 0)
last_it = (t == num_iterations + 1)
if first_it or last_it or epoch_end:
train_acc = self.check_accuracy(self.X_train, self.y_train,
num_samples=1000)
val_acc = self.check_accuracy(self.X_val, self.y_val)
self.train_acc_history.append(train_acc)
self.val_acc_history.append(val_acc)
if self.verbose:
print '(Epoch %d / %d) train acc: %f; val_acc: %f' % (
self.epoch, self.num_epochs, train_acc, val_acc)
# Keep track of the best model
if val_acc > self.best_val_acc:
self.best_val_acc = val_acc
self.best_params = {}
for k, v in self.model.params.iteritems():
self.best_params[k] = v.copy()
# At the end of training swap the best params into the model
self.model.params = self.best_params
Thanks.
I believe, as you say, that in the Stanford course they are effectively using "epoch" with the less strict meaning of "expected number of times each example is seen during training". However, in my experience, most implementations consider an epoch as running through every example in the training set once, and I'd say they only chose the sampling with replacement for simplicity. If you have a good amount of data, chances are that you will not see a difference, but still, it is more correct to sample without replacement until there are no more examples.
You can check, for example, how Keras does the training in its source code; it's a bit complicated, but the important point is that make_batches is called to split the (possibly shuffled) examples into batches, which matches your initial idea of "epoch".

Matlab: Converting Timestamps to Readable Format given the Reference Date-Time

I have a text file that contains timestamps out of a camera that captures 50 frames per second .. The data are as follows:
1 20931160389
2 20931180407
3 20931200603
4 20931220273
5 20931240360
.
.
50 20932139319
... and so on.
It gives also the starting time of capturing like
Date: **02.03.2012 17:57:01**
The timestamps are in microseconds not in milliseconds, and MATLAB can support only till milliseconds but its OK for me.
Now I need to know the human format of these timestamps for each row..like
1 20931160389 02.03.2012 17:57:01.045 % just an example
2 20931180407 02.03.2012 17:57:01.066
3 20931200603 02.03.2012 17:57:01.083
4 20931220273 02.03.2012 17:57:01.105
5 20931240360 02.03.2012 17:57:01.124
and so on
I tried this:
%Refernce Data
clc; format longg
refTime = [2012,03,02,17,57,01];
refNum = datenum(refTime);
refStr = datestr(refNum,'yyyy-mm-dd HH:MM:SS.FFF');
% Processing data
dn = 24*60*60*1000*1000; % Microseconds! I have changed this equation to many options but nothing was helpful
for i = 1 : size(Data,1)
gzTm = double(Data{i,2}); %timestamps are uint64
gzTm2 = gzTm / dn;
gzTm2 = refNum + gzTm2;
gzNum = datenum(gzTm2);
gzStr = datestr(gzNum,'yyyy-mm-dd HH:MM:SS.FFF'); % I can't use 'SS.FFFFFF'
fprintf('i = %d\t Timestamp = %f\t TimeStr = %s\n', i, gzTm, gzStr);
end;
But I got always strange outputs like
i = 1 Timestamp = 20931160389.000000 TimeStr = **2012-03-08 13:29:28.849**
i = 2 Timestamp = 20931180407.000000 TimeStr = **2012-03-08 13:29:29.330**
i = 3 Timestamp = 20931200603.000000 TimeStr = **2012-03-08 13:29:29.815**
The output time is about some hours late/earlier than the Referenced Time. The day is different.
The time gap between each entry in the array should be nearly 20 seconds..since I have 50 frames per second(1000 millisecond / 50 = 20) ..and the year,month, day,hour,minute and seconds should also indicate the initial time given as reference time because it is about some seconds earlier.
I expect something like:
% just an example
1 20931160389 02.03.2012 **17:57:01.045**
2 20931180407 02.03.2012 **17:57:01.066**
Could one help me please..! Where is my mistake?
It looks like you can work out the number of microseconds between a record and the first record:
usecs = double(Data{i,2}) - double(Data{1,2});
convert that into seconds:
secsDiff = usecs / 1e6;
then add that to the initial datetime you'd calculated:
matDateTime = refNum + secsDiff / (24*60*60);