PostgreSQL View Creating Huge Temp File - postgresql

I have 3 rather simple tables in Postgres that record which IDs were valid for each business date going back several years. The three tables represent 3 sources that record activity from these IDs. I can't give you the entire table, but imagine:
Date ID
2000-01-02 1
2000-01-02 2
2000-01-02 3
2000-01-02 4
. . .
2018-01-02 49997
2018-01-02 49998
2018-01-02 49999
2018-01-02 50000
So each table has daily data with potentially tens of thousands of IDs. Not all IDs show up on all days in all tables, so all I want is a view that gives me the master list of any ID that shows up on any of the tables on any of the days. Simple:
create view all_ids as
select distinct * from table1 union
select distinct * from table2 union
select distinct * from table3;
The view is created without any problem but it proves impossible to query. If I want to see what days a single id shows up on, I would write:
select * from all_ids where id=37;
The problem is that when Postgres runs this query, it first attempts to create a huge temporary table that is the union of the 3 tables. This, unfortunately, exceeds the temp_file_limit (5767168kB), and as I am not an admin, I cannot change the temp_file_limit. Regardless, this seems to contradict my understanding of how views even work. Please note: I can query an id or list of ids from any of the individual tables just fine.
I can write this as a function that I can pass specific IDs, but again, I believe that the view itself is supposed to handle this by returning just what I am asking for rather than creating the universe of data in memory first and then selecting from it.
Other relevant information is that we're using an old version of Postgres, 9.2.23. I am thinking there is something wrong about how it is handling views. The answer may be to bug out admin to upgrade this.
Any ideas?

What you are looking for is materialized views. I will just quote from the docs::
CREATE VIEW defines a view of a query. The view is not physically materialized. Instead, the query is run every time the view is referenced in a query.
The view that you have created all_ids, like you said, gets re-created every time this view is referenced.
Edit applies to Postgres 9.3+

Related

PostgreSQL - 100 million records transfer from archive to a new table

I have a requirement to transfer data from 2 tables (Table A and Table B) into a new table.
I am using a query to join both A and B tables using an ID column.
Table A and B are archive tables without any indexes. (Millions of records)
Table X and Y are a replica of A and B with good indexes. (Some thousands of records)
Below is the code for my project.
with data as
(
SELECT a.*, b.* FROM A_archive a
join B_archive b where a.transaction_id = b.transaction_id
UNION
SELECT x.*, y.* FROM X x
join Y y where x.transaction_id = y.transaction_id
)
INSERT INTO
Another_Table
(
columns
)
select * from data
On Conflict(transaction_id)
do udpate ...
The above whole thing is running in production environment and has nearly 140 million records.
Due to this production database is taking almost 10 hours to process the data and failing.
I am also having a distributed job scheduler in AWS to schedule this query inside a function and retrieve the latest records every 5 hours. The archive tables store closed invoice data. Pega UI will be using this table for retrieving data about closed invoices and showing to the customer.
Please suggest something that is a bit more performant.
UNION removes duplicate rows. On big unindexed tables that is an expensive operation. Try UNION ALL if you don't need deduplication. It will save the s**tton of data shuffling and comparisons required for deduplication.
Without indexes on your archival tables your JOIN operation will be grossly inefficient. Index, at a minimum, the transaction_id columns you use in your ON clause.
You don't say what you want to do with the resulting table. In many cases you'll be able to use a VIEW rather than a table for your purposes. A VIEW removes the work of creating the derived table. Actually it defers the work to the time of SELECT operations using the derived structure. If your SELECT operations have highly selective WHERE clauses the savings can be astonishing. For this to work well you may need to put appropriate indexes on your archival tables.
You use SELECT * when you could enumerate the columns you need. That certainly puts one redundant column into your result: it generates two copies of transaction_id. It also may generate other redundant or unused data. Always avoid SELECT * in production software unless you know you need it.
Keep this in mind: SQL is declarative, not procedural. You declare (describe) the result you require, and you let the server work out the best way to get it. VIEWs let the server do this work for you in cases like your table combination. It will use the indexes you provide as best it can.
That UNION must be costly, it pretty much builds a temp-table in the background containing all the A-B + X-Y records, sorts it (over all fields) and then removes any doubles. If you say 100 million records are involved then that's a LOT of sorting going on that most likely will involve swapping out to disk.
Keep in mind that you only need to do this if there are expected duplicates
in the result from the JOIN between A and B
in the result from the JOIN between X and Y
in the combined result from the two above
IF neither of those are expected, just use UNION ALL
In fact, in that case, why not have 1 INSERT operation for A-B and another one for X-Y? Going by the description I'd say that whatever is in X-Y should overrule whatever is in A-B anyway, right?
Also, as mentioned by O.Jones, archive tables or not, they should come at least with a (preferably clustered) index on the transaction_id fields you're JOINing on. (same for the Another_Table btw)
All that said, processing 100M records in 1 transaction IS going to take some time, it's just a lot of data that's being moved around. But 10h does sound excessive indeed.

Slow SQL Server 2008 R2 performance?

I'm using SQL Server 2008 R2 on my development machine (not a server box).
I have a table with 12.5 million records. It has 126 columns, half of which are int. Most columns in most rows are NULL. I've also tested with an EAV design which seems 3-4 times faster to return the same records (but that means pivoting data to make it presentable in a table).
I have a website that paginates the data. When the user tries to go to the last page of records (last 25 records), the resulting query is something like this:
select * from (
select
A.Id, part_id as PartObjectId,
Year_formatted 'year', Make_formatted 'Make',
Model_formatted 'Model',
row_number() over ( order by A.id ) as RowNum
FROM vehicles A
) as innerQuery where innerQuery.RowNum between 775176 and 775200
... but this takes nearly 3 minutes to run. That seems excessive? Is there a better way to structure this query? In the browser front-end I'm using jqGrid to display the data. The user can navigate to the next, previous, first, or last page. They can also filter and order data (example: show all records whose Make is "Bugatti").
vehicles.Id is int and is the primary key (clustered ASC). part_id is int, Make and Model are varchar(100) and typically only contain 20 - 30 characters.
Table vehicles is updated ~100 times per day in individual transactions, and 20 - 30 users use the webpage to view, search, and edit/add vehicles 8 hours/day. It gets read from and updated a lot.
Would it be wise to shard the vehicles table into multiple tables only containing say 3 million records each? Would that have much impact on performance?
I see lots of videos and websites talking about people having tables with 100+ million rows that are read from and updated often without issue.
Note that the performance issues I observe are on my own development computer. The database has a dedicated 16GB of RAM. I'm not using SSD or even SCSI for that matter. So I know hardware would help, but 3 minutes to retrieve the last 25 records seems a bit excessive no?
Though I'm running these tests on SQL Server 2008 R2, I could also use 2012 if there is much to be gained from doing so.
Yes there is a better way, even on older releases of MsSQL But it is involved. First, this process should be done in a stored procedure. The stored procedure should take as 2 of it's input parameters, the page requested (#page)and the page size (number of records per page - #pgSiz).
In the stored procedure,
Create a temporary table variable and put into it a sorted list of the integer Primary Keys for all the records, with a rowNumber column that is itself an indexed, integer, Primary Key for the temp table
Declare #PKs table
(rowNo integer primary key Identity not null,
vehicleId integer not null)
Insert #PKS (vehicleId)
Select vehicleId from Vehicles
Order By --[Here put sort criteria as you want pages sorted]
--[Try to only include columns that are in an index]
then, based on which page (and the page size), (#page, #pgSiz) the user requested, the stored proc selects the actual data for that page by joining to this temp table variable:
Select [The data columns you want]
From #PKS p join Vehicles v
on v.VehicleId = p.VehicleId
Where rowNo between #page*#pgSiz+1 and (#page+1)*#pgSiz
order by rowNo -- if you want to sort page of records on server
assuming #page is 0-based. Also, the Stored proc will need some input argument validation to ensure that the #page, #pgSize values are reasonable (do not take the code pas the end of the records.)

Execution Plan on a View looking at Partitioned Tables

I currently have tables that are partitioned out by year & month for our sales transactions. For example, we have sales tables that would look something like this:
factdailysales_201501
factdailysales_201502
factdailysales_201503 etc ...
Generally, I've always performed dynamic SQL to capture a Start Date, End Date, find out what partitions those are, and then loop through each of those partitions ... but its starting to become such a hassle and I've learned that this is probably not the best way to do it in terms of just maintenance, trouble shooting, and performance.
I decided to build a view that would UNION ALL of my sales partitions together. However, I don't want selecting from the view to have to scan all of the partitions on execution, it would take away the whole purpose of partitioning tables out. Because of this, I added check constraints on date to each of my sales tables. This way when I selected from the view, it would know which tables to access from instead of scanning every table.
Here are the following examples below:
SELECT SUM([retail])
FROM Sales_Orig
WHERE [Date] >= '2015-03-01'
This query has the execution plan of only pulling from the partitions that I need.
My problem that i'm facing right now is that most of the time when my team will be writing stored procedures, they would more than likely write their queries where a date variable is passed into the where statement.
DECLARE #SD DATE = '2015-03-01'
SELECT SUM([retail])
FROM Sales_Orig
WHERE [Date] >= #SD
However, when a variable is being passed in, the execution plan now scans ALL of the partitions in the view, causing the performance to take wayyy longer than when I hard coded in the date
I suppose I could do dynamic SQL again and insert the date string into the SELECT statement, but it would bring me back to the beginning of trying to get rid of dynamic SQL in the first place for this simple sales query.
So my question is, am I setting this up wrong? Am I on the right track? It seems that the view can't take in a variable for the check constraint and ends up scanning every table. Is there another approach anyone would recommend? Maybe my original solution of just looping through partitions via dynamic SQL is the best way to do it?
** EDIT **
http://sqlsunday.com/2014/08/31/partitioned-views/
This article is actually where I initially saw the idea! It seems when using that exact same solution, I'm still experiencing the same struggle!
Thanks!!
Okay this might work. It's a table-valued function that only access tables according to your #start and #end parameters so only accessing your "partitions" that it needs. I figured you could take this concept and write some dynamic SQL to create all the if statements.
Now of course new tables are added every day so how does that tie in. Well I think the best way would be is that every day you alter the function adding the next sales table. That way querying it is simple. And you could use the same dynamic sql you used to create the function to alter it which should be relatively simple.
Note: I added default values that are the min and max of the data type DATE. That way you could query something like everything from 20140101 and onward or vice versa.
Your tables
SELECT CAST('20150101' AS DATE) datesVal INTO factDailySales_20150101;
SELECT CAST('20150102' AS DATE) datesVal INTO factDailySales_20150102;
SELECT CAST('20150103' AS DATE) datesVal INTO factDailySales_20150103;
The Function
CREATE FUNCTION ufn_factTotalSales (#Start DATE = '17530101', #End DATE = '99991231')
RETURNS #factTotalSales TABLE
(
datesVal DATE
)
AS
BEGIN
IF(CAST('20150101' AS DATE) BETWEEN #Start AND #End)
BEGIN
INSERT INTO #factTotalSales
SELECT datesVal
FROM factDailySales_20150101
END
IF(CAST('20150102' AS DATE) BETWEEN #Start AND #End)
BEGIN
INSERT INTO #factTotalSales
SELECT datesVal
FROM factDailySales_20150102
END
IF(CAST('20150103' AS DATE) BETWEEN #Start AND #End)
BEGIN
INSERT INTO #factTotalSales
SELECT datesVal
FROM factDailySales_20150103
END
RETURN;
END
GO
All tables
SELECT *
FROM ufn_factTotalSales(default,default)
All tables greater than or equal to 20150102
SELECT *
FROM ufn_factTotalSales('20150102',default)
**All tables less than or equal to 20150102
SELECT *
FROM ufn_factTotalSales(default,'20150102')
All tables between specific range
SELECT *
FROM ufn_factTotalSales('20150101','20150102')
Is this the ideal solution? No. The ideal would be to combine all tables into one and having good indexes. I know you said that wouldn't work because of the way other code has been written. Hear me out. Now perhaps this is off the wall, lets say you do combine the tables but obviously there are old scripts looking for specific daily sales tables. Maybe you could create views with the dailySales names that access the factTotalSales. OR You could create synonyms for the factTotalSales that would correspond to each factDailySales.
Maybe you could look into that. It wouldn't be easy, but I think letting SQL Server optimize your queries the way it was designed is a better way of doing it instead of forcing it with dynamic SQL.
Just my two cents. Hope this helps. At the very least, I hope it gave you some ideas.
5 years later: option(recompile).
The planner needs to have access to the constants to eliminate the table entirely from the query plan. With a variable, without a forced recompile, a generic plan is used. (Related: parameter sniffing.)
While this means the query plan is larger as it has to include all tables, it does not mean that all tables are actually scanned: look at the IO stats, as table scan elimination occurs even if such shows in the query plan.
The 'Number Of Executions' in the query plan will be 0 when the tables are not scanned: unfortunately, these branches are still reported as a non-zero percentage cost "Table Scan" node in the query plan & UI, which will appear high proportionally if the query is trivially fast. The displayed percentage cost of these extra "Table Scan" nodes approaches zero as the amount of data returned from the actually used base tables increases.
This same optimization/elimination occurs when the view is not a Partitioned View (eg. base tables are missing partition column in PK), yet the underlying tables have a suitable Check Constraint on the filtered column. It also occurs when the view selects a constant value to establish the partition that is not otherwise stored in the table. With a constant in the query or recompiled plan the tables will be eliminated entirely. With a variable the tables will still not actually be scanned and thus eliminated logically during query execution.
The use of a proper Partitioned View is only really beneficial to allow a direct Insert & Update, with the major caveat that it requires the partition column to be in each table's PK and disallows the use of an identity column (making a Partitioned View largely useless IMOHO). SQL Server handles the optimizations very similarly for other quasi-Partitioned View cases.
(This is on SQL Server 2014; earlier versions might not have optimized the different patterns as efficiently.)

select * or individual columns

Is there any difference in performance between
select *
from table name
and
select [col1]
,[col2]
......
,[coln]
from table name
It is a SQL antipattern to use SELECT *. It is faster for the database when you specify columns (it doesn't have to look them up) and more importantly, you should not ever specify more columns than you actually need. If you have a join in your query you have at least one column you don't need (the join column) and thus SELECT * is always slower to return records in a query with a join since it is returning more infomation than necessary.
Now all this sounds like a small improvement and in a small system it might be, but as the database grows and gets busy, the performance implications become bigger. There is no excuse for using SELECT *.
SELECT * is also bad for maintenance especially if you use it to insert records - always specify both the columns you are inserting to and the fields from the select in an INSERT statement that uses a SELECT. It will break if you change the table structure. You may also end up showing the user columns you don't want them to see such as the GUID added for replication.
If you use SELECT * in a view (at least in SQL Server) the view will still not automatically update in the case of a change to the underlying tables. If someone gets the silly idea to re-arrange the column order in the table (yeah I know you shouldn't but people do this on occasion) using SELECT * might mean that data will show up in the wrong columns in reports or inserts which can cause problems where things might be misinterpreted. I can think of one case where two columns were swapped in a staging table and the social security number became the amount we intended to pay the person giving a speech. You can see how that might really muck up the accounting except we didn't use SELECT * so we were safe because the columns retained the same name.
I want to note that you don't even save much development time by using SELECT *. It takes me a max of about 15 seconds more to use the table names even in a large table as I drag them over from the object browser in SQL Server (you can get all the columns in one step).
I suppose select * takes a few cpu cycles less since sql server parses your statements, but i don't think it will make a noticable difference

Suggestion needed to avoid table scan in large view w/many duplicate values

Could anyone offer a solution to speed up one of our processes? We have a view used for reporting that is a union all of 10 tables. The view has 180 million rows. We would like to generate a list of the distinct values of individual columns. The current SQL generated by the reporting tool does a select distinct on the view which takes 10 minutes. Preferably the solution would be automatically updated. We have been trying to create a MQT in DB2 udb V8 as a union all, refresh immediate with little success. Any suggestions would be greatly appreciated.
Charles.
There are a lot of restrictions in DB2 8.2 for refresh immediate MQTs, and they can have a significant performance impact on applications that write to the base tables. That said, you may be able to use an MQT. However, instead of using SELECT DISTINCT, try making the query look something like:
select yourcolumn, count(*) as ignore
from union_all_view
group by yourcolumn
The column (yourcolumn) from must be defined as NOT NULL for this to work (in DB2 8.2). The optimizer may not select this MQT if you still issue SELECT DISTINCT against the union all view, so you may need to query the MQT (or a view defined on top of it) directly. Ignore the column "ignore" in the MQT -- that is there only for DB2; if you really don't want to see it, you can create a vew on top of the MQT.
However, this is really a database design issue. Why do you need to scan 180 million rows of data to find the unique values in a particular column? Why don't these values already reside in their own table, with foreign keys defined against it from each of the 10 base tables?