Domain adaptation on Keras - neural-network

I am developing an image classifier using CNN on Keras. Since the images were taken from multiple domains, I would like to try domain adaptation.
To simultaneously train an image classifier as well as make domain-invariant features, I posed a negative loss weight for domain loss like this in Keras.
model.compile(optimizer='adam',
loss={'main_output': 'categorical_crossentropy', 'domain_output': 'categorical_crossentropy'},
loss_weights={'main_output': 1, 'domain_output': -0.1},
metrics={'main_output': 'accuracy, 'domain_output': 'accuracy'})
Here, main output is the softmax output for image classification, and domain_output is the softmax output for domain classification (target: domain label).
Is this implementation correct for domain adaption?
Is this approach functionally same as the "gradient reversal layer" (reversing the gradient for domain classification) proposed in this paper?

Well - answer for both of your question is yes (as long as you have separate model branches and outputs for the domain and class prediction).
This implementation is correct - as domain adaptation need reversal gradients (which is equivalent to have a loss with negative weight),
As stated above - yes.

I think the answer should be:
1. Yes, it is one kind of domain adaption.
2. No, it is not the implementation of that paper.
It is because of that for "gradient reversal layer", the gradient reversal happens before several fully-connected layers. It means these layers are trained for discriminating domains. If you directly just reverse the loss as you did in your code, it will make the last layers divergent, too. Basically, you are training nothing.
I am not sure the final results though, but I guess it could be worse than the original implementation of "gradient reversal layer".

Related

Can I train Word2vec using a Stacked Autoencoder with non-linearities?

Every time I read about Word2vec, the embedding is obtained with a very simple Autoencoder: just one hidden layer, linear activation for the initial layer, and softmax for the output layer.
My question is: why can't I train some Word2vec model using a stacked Autoencoder, with several hidden layers with fancier activation functions? (The softmax at the output would be kept, of course.)
I never found any explanation about this, therefore any hint is welcome.
Word vectors are noting but hidden states of a neural network trying to get good at something.
To answer your question
Of course you can.
If you are going to do it why not use fancier networks/encoders as well like BiLSTM or Transformers.
This is what people who created things like ElMo and BERT did(though their networks were a lot fancier).

Error function and ReLu in a CNN

I'm trying to get a better understanding of neural networks by trying to programm a Convolution Neural Network by myself.
So far, I'm going to make it pretty simple by not using max-pooling and using simple ReLu-activation. I'm aware of the disadvantages of this setup, but the point is not making the best image detector in the world.
Now, I'm stuck understanding the details of the error calculation, propagating it back and how it interplays with the used activation-function for calculating the new weights.
I read this document (A Beginner's Guide To Understand CNN), but it doesn't help me understand much. The formula for calculating the error already confuses me.
This sum-function doesn't have defined start- and ending points, so i basically can't read it. Maybe you can simply provide me with the correct one?
After that, the author assumes a variable L that is just "that value" (i assume he means E_total?) and gives an example for how to define the new weight:
where W is the weights of a particular layer.
This confuses me, as i always stood under the impression the activation-function (ReLu in my case) played a role in how to calculate the new weight. Also, this seems to imply i simply use the error for all layers. Doesn't the error value i propagate back into the next layer somehow depends on what i calculated in the previous one?
Maybe all of this is just uncomplete and you can point me into the direction that helps me best for my case.
Thanks in advance.
You do not backpropagate errors, but gradients. The activation function plays a role in caculating the new weight, depending on whether or not the weight in question is before or after said activation, and whether or not it is connected. If a weight w is after your non-linearity layer f, then the gradient dL/dw wont depend on f. But if w is before f, then, if they are connected, then dL/dw will depend on f. For example, suppose w is the weight vector of a fully connected layer, and assume that f directly follows this layer. Then,
dL/dw=(dL/df)*df/dw //notations might change according to the shape
//of the tensors/matrices/vectors you chose, but
//this is just the chain rule
As for your cost function, it is correct. Many people write these formulas in this non-formal style so that you get the idea, but that you can adapt it to your own tensor shapes. By the way, this sort of MSE function is better suited to continous label spaces. You might want to use softmax or an svm loss for image classification (I'll come back to that). Anyway, as you requested a correct form for this function, here is an example. Imagine you have a neural network that predicts a vector field of some kind (like surface normals). Assume that it takes a 2d pixel x_i and predicts a 3d vector v_i for that pixel. Now, in your training data, x_i will already have a ground truth 3d vector (i.e label), that we'll call y_i. Then, your cost function will be (the index i runs on all data samples):
sum_i{(y_i-v_i)^t (y_i-vi)}=sum_i{||y_i-v_i||^2}
But as I said, this cost function works if the labels form a continuous space (here , R^3). This is also called a regression problem.
Here's an example if you are interested in (image) classification. I'll explain it with a softmax loss, the intuition for other losses is more or less similar. Assume we have n classes, and imagine that in your training set, for each data point x_i, you have a label c_i that indicates the correct class. Now, your neural network should produce scores for each possible label, that we'll note s_1,..,s_n. Let's note the score of the correct class of a training sample x_i as s_{c_i}. Now, if we use a softmax function, the intuition is to transform the scores into a probability distribution, and maximise the probability of the correct classes. That is , we maximse the function
sum_i { exp(s_{c_i}) / sum_j(exp(s_j))}
where i runs over all training samples, and j=1,..n on all class labels.
Finally, I don't think the guide you are reading is a good starting point. I recommend this excellent course instead (essentially the Andrew Karpathy parts at least).

Can a convolutional neural network be built with perceptrons?

I was reading this interesting article on convolutional neural networks. It showed this image, explaining that for every receptive field of 5x5 pixels/neurons, a value for a hidden value is calculated.
We can think of max-pooling as a way for the network to ask whether a given feature is found anywhere in a region of the image. It then throws away the exact positional information.
So max-pooling is applied.
With multiple convolutional layers, it looks something like this:
But my question is, this whole architecture could be build with perceptrons, right?
For every convolutional layer, one perceptron is needed, with layers:
input_size = 5x5;
hidden_size = 10; e.g.
output_size = 1;
Then for every receptive field in the original image, the 5x5 area is inputted into a perceptron to output the value of a neuron in the hidden layer. So basically doing this for every receptive field:
So the same perceptron is used 24x24 amount of times to construct the hidden layer, because:
is that we're going to use the same weights and bias for each of the 24×24 hidden neurons.
And this works for the hidden layer to the pooling layer as well, input_size = 2x2; output_size = 1;. And in the case of a max-pool layer, it's just a max() function on an array.
and then finally:
The final layer of connections in the network is a fully-connected
layer. That is, this layer connects every neuron from the max-pooled
layer to every one of the 10 output neurons.
which is a perceptron again.
So my final architecture looks like this:
-> 1 perceptron for every convolutional layer/feature map
-> run this perceptron for every receptive field to create feature map
-> 1 perceptron for every pooling layer
-> run this perceptron for every field in the feature map to create a pooling layer
-> finally input the values of the pooling layer in a regular ALL to ALL perceptron
Or am I overseeing something? Or is this already how they are programmed?
The answer very much depends on what exactly you call a Perceptron. Common options are:
Complete architecture. Then no, simply because it's by definition a different NN.
A model of a single neuron, specifically y = 1 if (w.x + b) > 0 else 0, where x is the input of the neuron, w and b are its trainable parameters and w.b denotes the dot product. Then yes, you can force a bunch of these perceptrons to share weights and call it a CNN. You'll find variants of this idea being used in binary neural networks.
A training algorithm, typically associated with the Perceptron architecture. This would make no sense to the question, because the learning algorithm is in principle orthogonal to the architecture. Though you cannot really use the Perceptron algorithm for anything with hidden layers, which would suggest no as the answer in this case.
Loss function associated with the original Perceptron. This notion of Peceptron is orthogonal to the problem at hand, you're loss function with a CNN is given by whatever you try to do with your whole model. You can eventually use it, but it is non-differentiable, so good luck :-)
A sidenote rant: You can see people refer to feed-forward, fully-connected NNs with hidden layers as "Multilayer Perceptrons" (MLPs). This is a misnomer, there are no Perceptrons in MLPs, see e.g. this discussion on Wikipedia -- unless you go explore some really weird ideas. It would make sense call these networks as Multilayer Linear Logistic Regression, because that's what they used to be composed of. Up till like 6 years ago.

Partially defined target for supervised neural network training in MATLAB?

I have a question relating to partially supervised training of neural networks using MATLAB (and the neural network toolbox).
I have a neural net that has two output layers: one 'final' layer at the end of a feedforward network, and one middle layer within said network.
I am training the network via the final layer using labeled data (targets), but I'd also like to put an output constraint on the middle output layer (as follows in the next paragraph). In short summary, I'd like to supervise training of the middle layer only some of the time (known times), and let it train supervised to a target (zeros) the rest of the time.
Here are the details:
When the final layer target is in a specific state 'A', the middle layer is trained to be certain different target values (zeros in my case), however when the final layer target is in other states ('B', 'C', 'D', etc), the middle layer has no target and learns 'unsupervised' to the values the training sees fit.
Is there a way to do this in MATLAB? e.g. Can I define targets to be partially undefined?
I have been reading around semi-supervised learning, but this seems to pertain to something different and carries over assumptions based off the supervised training part, which I don't want to do here.
This question is trying to solve the problem of "how to do I make my middle layer zeros when my final layer is zeros?". Perhaps there is an easier way to achieve this than what I'm posing above. e.g. have only positive transfer functions between the middle layer and final layer. I'd like to hear your thoughts if you have any other ideas!
Look forward to your replies and thanks in advance!
best, Rob

Using a learned Artificial Neural Network to solve inputs

I've recently been delving into artificial neural networks again, both evolved and trained. I had a question regarding what methods, if any, to solve for inputs that would result in a target output set. Is there a name for this? Everything I try to look for leads me to backpropagation which isn't necessarily what I need. In my search, the closest thing I've come to expressing my question is
Is it possible to run a neural network in reverse?
Which told me that there, indeed, would be many solutions for networks that had varying numbers of nodes for the layers and they would not be trivial to solve for. I had the idea of just marching toward an ideal set of inputs using the weights that have been established during learning. Does anyone else have experience doing something like this?
In order to elaborate:
Say you have a network with 401 input nodes which represents a 20x20 grayscale image and a bias, two hidden layers consisting of 100+25 nodes, as well as 6 output nodes representing a classification (symbols, roman numerals, etc).
After training a neural network so that it can classify with an acceptable error, I would like to run the network backwards. This would mean I would input a classification in the output that I would like to see, and the network would imagine a set of inputs that would result in the expected output. So for the roman numeral example, this could mean that I would request it to run the net in reverse for the symbol 'X' and it would generate an image that would resemble what the net thought an 'X' looked like. In this way, I could get a good idea of the features it learned to separate the classifications. I feel as it would be very beneficial in understanding how ANNs function and learn in the grand scheme of things.
For a simple feed-forward fully connected NN, it is possible to project hidden unit activation into pixel space by taking inverse of activation function (for example Logit for sigmoid units), dividing it by sum of incoming weights and then multiplying that value by weight of each pixel. That will give visualization of average pattern, recognized by this hidden unit. Summing up these patterns for each hidden unit will result in average pattern, that corresponds to this particular set of hidden unit activities.Same procedure can be in principle be applied to to project output activations into hidden unit activity patterns.
This is indeed useful for analyzing what features NN learned in image recognition. For more complex methods you can take a look at this paper (besides everything it contains examples of patterns that NN can learn).
You can not exactly run NN in reverse, because it does not remember all information from source image - only patterns that it learned to detect. So network cannot "imagine a set inputs". However, it possible to sample probability distribution (taking weight as probability of activation of each pixel) and produce a set of patterns that can be recognized by particular neuron.
I know that you can, and I am working on a solution now. I have some code on my github here for imagining the inputs of a neural network that classifies the handwritten digits of the MNIST dataset, but I don't think it is entirely correct. Right now, I simply take a trained network and my desired output and multiply backwards by the learned weights at each layer until I have a value for inputs. This is skipping over the activation function and may have some other errors, but I am getting pretty reasonable images out of it. For example, this is the result of the trained network imagining a 3: number 3
Yes, you can run a probabilistic NN in reverse to get it to 'imagine' inputs that would match an output it's been trained to categorise.
I highly recommend Geoffrey Hinton's coursera course on NN's here:
https://www.coursera.org/course/neuralnets
He demonstrates in his introductory video a NN imagining various "2"s that it would recognise having been trained to identify the numerals 0 through 9. It's very impressive!
I think it's basically doing exactly what you're looking to do.
Gruff