Google Assistant training parse does not match data - actions-on-google

I'm befuddled as to how best fix this. In the training data, it looks like the Google agent parsed out the information correctly.
But when I get it in my endpoint to fulfill the request, they do not match.
There is no way for me to indicate that it made a mistake because according to the training information, it parsed everything correctly. Has anyone else encountered this, and if so, what was the solution?

Okay, I think I'm beginning to understand this a little. When this occurs, this means the format that the training data is recognizing is not actually in the sample utterances of that intent. That is why the data is mismatched. All I had to do was approve that training data.

Related

How to Identify values from characteristic data for Walk Run Stride bluetooth sensor

I am developing a workout app with sensor connectivity and able to read and get data for Heart rate sensor but for stride sensors (walk/Run) facing problem to map the values given by sensor characteristic.
How will I get Speed, cadence, steps per mints , Distance.?
I searched on google didn't get for this.
I am pretty much sure getting data but difficulty in mapping index and values for different parameters.
Check attached code snapshot for data output.
Thanks in Advance...!!
This question should not be tagged cadence, unless I'm missing something? That tag if for "A global provider of Electronic Design Automation (EDA) software and engineering services."
PS: I can't comment yet, please resolve this and delete this answer.

How to break up large document into smaller answer units on Retrieve and Rank?

I am still very new to Retrieve and Rank, and Document Conversion services, so I have been playing around with that lately.
I encountered a problem where when I upload a large document (100+ pages) - Retrieve and Rank would help me automatically break it up into answer units, which is great and helpful.
However, some questions only require ONE small line in the big chunks of answer units, is there a way that I can manually break further down the answer units that Retrieve and Rank service has provided me?
I heard that you can do it through JavaScript, but is there a way to do it through the UI?
I am contemplating to manually break up the huge doc into multiple smaller documents, but that could potentially lead to 100s of them - which is probably the last option that I'd resort to.
Any help or suggestions is greatly appreciated!
Thank you all!
First off, one clarification:
Retrieve and Rank does not break up your documents into answer units. That is something that the Document Conversion Service does when your conversion target is ANSWER_UNITS.
Regarding your question:
I don't fully understand exactly what you're trying to do, but if the answer units that are produced by default don't meet your requirements, you can customize different steps of the conversion process to adjust the produced answer units. Take a look at the documentation here.
Specifically, you want to make sure that the heading levels (for Word, PDF or HTML, depending on your document type) are defined in a way that
they detect the start of each answer unit. Then, make sure that the heading levels that you defined (h1, h2, h3, etc.) are included in the selector_tags list within the answer_units section.
Once your custom Document Conversion Service configuration produces the answer units you are looking for, you will be ready to send them to Retrieve and Rank to be indexed.

User Classification in RapidMiner - output should be the user based on a fed test data

How can I use RapidMiner to run the classifier on a test data, and classify a user based on that data - I need it to actually output who the classified user is, and not its performance. Any help would be greatly appreciated.
I found the answer to my question!
You just have to use an example (row) with Attributes(Column Headers) and then feed it to the Apply Model operator. Make sure you remove the label(or what you want to be predicted) from that example.
The results will give you a row with an added attribute called Prediction.

Sentiment Analysis - What does annotating dataset mean?

I'm currently working on my final year research project, which is an application which analyzes travel reviews found online, and give out a sentiment score for particular tourist attractions as a result, by conducting aspect level sentiment analysis.
I have a newly scraped dataset from a famous travel website which does not allow to use their API for research/academic purposes. (bummer)
My supervisor said that I might need to get this dataset annotated before using it for the aforementioned purpose. I am kind of confused as to what data annotation means in this context. Could someone please explain what exactly is happening when a dataset is annotated and how it helps in getting sentiment analysis done?
I was told that I might have to get two/three human annotators and get the data annotated to make it less biased. I'm on a tight schedule and I was wondering if there are any tools that can get it done for me? If so, what will be the impact of using such tools over human annotators? I would also like suggestions for such tools that you would recommend.
I would really appreciate a detailed explanation to my questions, as I am stuck with my project progressing to the next step because of this.
Thank you in advance.
To a first approximation, machine learning algorithms (e.g., a sentiment analysis algorithm) is learning to perform a task that humans currently perform by collecting many examples of the human performing the task, and then imitating them. When your supervisor talks about "annotation," they're talking about collecting these examples of a human doing the sentiment annotation task: annotating a sentence for sentiment. That is, collecting pairs of sentences and their sentiment as judged by humans. Without this, there's nothing for the program to learn from, and you're stuck hoping the program can give you something from nothing -- which it never will.
That said, there are tools for collecting this sort of data, or at least helping. Amazon Mechanical Turk and other crowdsourcing platforms are good resources for this sort of data collection. You can also take a look at something like: http://www.crowdflower.com/type-sentiment-analysis.

What ist a RESTful-resource in the context of large data sets, i.E. weather data?

So I am working on a webservice to access our weather forecast data (10000 locations, 40 parameters each, hourly values for the next 14 days = about 130 million values).
So I read all about RESTful services and its ideology.
So I understand that an URL is adressing a ressource.
But what is a ressource in my case?
The common use case is that you want to get the data for a couple of parameters over a timespan at one or more location. So clearly giving every value its own URL is not pratical and would result in hundreds of requests. I have the feeling that my specific problem doesn't excactly fit into the RESTful pattern.
Update: To clarify: There are two usage patterns of the service. 1. Raw data; rows and rows of data for several locations and parameters.
Interpreted data; the raw data calculated into symbols (Suns & clouds, for example) and other parameters.
There is not one 'forecast'. Different clients have different needs for data.
The reason I think this doesn't fit into the REST-pattern is, that while I can actually have a 'forecast' ressource, I still have to submit a lot of request parameters. So a simple GET-request on a ressource doesn't work, I end up POSTing data all over the place.
So I am working on a webservice to access our weather forecast data (10000 locations, 40 parameters each, hourly values for the next 14 days = about 130 million values). ... But what is a ressource in my case?
That depends on the details of your problem domain. Simply having a large amount of data is not a good reason to avoid REST. There are smart ways and dumb ways to model and expose that data.
As you rightly see, your main goal at this point should be to understand what exactly a resource is. Knowing only enough about weather forecasting to follow the Weather Channel, I won't be much help here. It's for domain experts like yourself to make that call.
If you were to explain in a little more detail the major domain concepts you're working with, it might make it a little easier to give specific advice.
For example, one resource might be Forecast. When weatherpeople talk about Forecasts, what words keep coming up? When you think about breaking a forecast down into smaller elements, what words do you use to describe the pieces?
Do this process recursively, and you'll probably be able to make a list of important terms. Don't forget that these terms can describe things or actions. Think about what these terms really mean, what data you can use to model them, how they can be aggregated.
At this point you'll have the makings of something you can start building a RESTful system around - but not before.
Don't forget that a RESTful system is not a data dump wrapped in HTTP - it's a hypertext-driven system.
Also don't forget that media types are the point of contact between your server and its clients. A media type is only limited by your imagination and can model datasets of any size if you're clever about it. It can contain XML, JSON, YAML, binary elements such as a Bloom Filter, or whatever works for the problem.
Firstly, there is no once-and-for-all right answer.
Each valid url is something that makes sense to query, think of them as equivalents to providing query forms for people looking for your data - that might help you narrow down the scenarios.
It is a matter of personal taste and possibly the toolkit you use, as to what goes into the basic url path and what parameters are encoded. The debate is a bit like the XML debate over putting values in elements vs attributes. It is not always a rational or logically decided issue nor will everybody be kind in their comments on your decisions.
If you are using a backend like Rails, that implies certain conventions. Even if you're not using Rails, it makes sense to work in the same way unless you have a strong reason to change. That way, people writing clients to talk to Rails-based services will find yours easier to understand and it saves you on documentation time ;-)
Maybe you can use forecast as the ressource and go deeper to fine grained services with xlink.
Would it be possible to do something like this,Since you have so many parameters so i was thinking if somehow you can relate it to a mix of id / parameter combo to decrease the url size
/WeatherForeCastService//day/hour
www.weatherornot.com/today/days/x // (where x is number of days)
www.weatherornot.com/today/9am/hours/h // (where h is number of hours)