Trim output of a Keras feed forward network - neural-network

I'm using a simple feed forward network in Keras for a regression problem. The setup of the network is quite simple: 3 hidden layers with tanh activation, output layer has a single node with linear activation.
However, I noticed that the output has some fairly extreme values like the below:
I'm a bit concerned that the extreme values will dominate the loss function (MSE) so I'd like to trim it. Is there a way to do this in Keras?

i think you mean regularization ( L1, L2, ... ) : https://keras.io/regularizers/ ( i.e. in the Dense layer )
also see https://keras.io/layers/core/#lambda

Related

Can a convolutional neural network be built with perceptrons?

I was reading this interesting article on convolutional neural networks. It showed this image, explaining that for every receptive field of 5x5 pixels/neurons, a value for a hidden value is calculated.
We can think of max-pooling as a way for the network to ask whether a given feature is found anywhere in a region of the image. It then throws away the exact positional information.
So max-pooling is applied.
With multiple convolutional layers, it looks something like this:
But my question is, this whole architecture could be build with perceptrons, right?
For every convolutional layer, one perceptron is needed, with layers:
input_size = 5x5;
hidden_size = 10; e.g.
output_size = 1;
Then for every receptive field in the original image, the 5x5 area is inputted into a perceptron to output the value of a neuron in the hidden layer. So basically doing this for every receptive field:
So the same perceptron is used 24x24 amount of times to construct the hidden layer, because:
is that we're going to use the same weights and bias for each of the 24×24 hidden neurons.
And this works for the hidden layer to the pooling layer as well, input_size = 2x2; output_size = 1;. And in the case of a max-pool layer, it's just a max() function on an array.
and then finally:
The final layer of connections in the network is a fully-connected
layer. That is, this layer connects every neuron from the max-pooled
layer to every one of the 10 output neurons.
which is a perceptron again.
So my final architecture looks like this:
-> 1 perceptron for every convolutional layer/feature map
-> run this perceptron for every receptive field to create feature map
-> 1 perceptron for every pooling layer
-> run this perceptron for every field in the feature map to create a pooling layer
-> finally input the values of the pooling layer in a regular ALL to ALL perceptron
Or am I overseeing something? Or is this already how they are programmed?
The answer very much depends on what exactly you call a Perceptron. Common options are:
Complete architecture. Then no, simply because it's by definition a different NN.
A model of a single neuron, specifically y = 1 if (w.x + b) > 0 else 0, where x is the input of the neuron, w and b are its trainable parameters and w.b denotes the dot product. Then yes, you can force a bunch of these perceptrons to share weights and call it a CNN. You'll find variants of this idea being used in binary neural networks.
A training algorithm, typically associated with the Perceptron architecture. This would make no sense to the question, because the learning algorithm is in principle orthogonal to the architecture. Though you cannot really use the Perceptron algorithm for anything with hidden layers, which would suggest no as the answer in this case.
Loss function associated with the original Perceptron. This notion of Peceptron is orthogonal to the problem at hand, you're loss function with a CNN is given by whatever you try to do with your whole model. You can eventually use it, but it is non-differentiable, so good luck :-)
A sidenote rant: You can see people refer to feed-forward, fully-connected NNs with hidden layers as "Multilayer Perceptrons" (MLPs). This is a misnomer, there are no Perceptrons in MLPs, see e.g. this discussion on Wikipedia -- unless you go explore some really weird ideas. It would make sense call these networks as Multilayer Linear Logistic Regression, because that's what they used to be composed of. Up till like 6 years ago.

Neural Networks Regression : scaling the outputs or using a linear layer?

I am currently trying to use Neural Network to make regression predictions.
However, I don't know what is the best way to handle this, as I read that there were 2 different ways to do regression predictions with a NN.
1) Some websites/articles suggest to add a final layer which is linear.
http://deeplearning4j.org/linear-regression.html
My final layers would look like, I think, :
layer1 = tanh(layer0*weight1 + bias1)
layer2 = identity(layer1*weight2+bias2)
I also noticed that when I use this solution, I usually get a prediction which is the mean of the batch prediction. And this is the case when I use tanh or sigmoid as a penultimate layer.
2) Some other websites/articles suggest to scale the output to a [-1,1] or [0,1] range and to use tanh or sigmoid as a final layer.
Are these 2 solutions acceptable ? Which one should one prefer ?
Thanks,
Paul
I would prefer the second case, in which we use normalization and sigmoid function as the output activation and then scale back the normalized output values to their actual values. This is because, in the first case, to output the large values (since actual values are large in most cases), the weights mapping from penultimate layer to the output layer would have to be large. Thus, for faster convergence, the learning rate has to be made larger. But this may also cause learning of the earlier layers to diverge since we are using a larger learning rate. Hence, it is advised to work with normalized target values, so that the weights are small and they learn quickly.
Hence in short, the first method learns slowly or may diverge if a larger learning rate is used and on the other hand, the second method is comparatively safer to use and learns quickly.

How to convert RNN into a regression net?

If the output is a tanh function, then I get a number between -1 and 1.
How do I go about converting the output to the scale of my y values (which happens to be around 15 right now, but will vary depending on the data)?
Or am I restricted to functions which vary within some kind of known range...?
Just remove the tanh, and your output will be an unrestricted number. Your error function should probably be squared error.
You might have to change the gradient calculation for your back-prop, if this isn't done automatically by your framework.
Edit to add: You almost certainly want to keep the tanh (or some other non-linearity) between the recurrent connections, so remove it only for the output connection.
In most RNNs for classification, most people use a softmax layer on top of their LSTM or tanh layers so I think you can replace the softmax with just a linear output layer. This is what some people do for regular neural networks as well as convolutional neural networks. You will still have the nonlinearity from the hidden layers, but your outputs will not be restricted within a certain range such as -1 and 1. The cost function would probably be the squared error like larspars mentioned.

Classification with feed forward network in Matlab strange results?

I have ran some classification tests in Matlab with feed forward network. Using the standard tansig function the results were better when using more neurons on the hidden layer.
But, when I switched to pure lin I was surprised to see that the results were better when I set a smaller number of neurons on the hidden layer.
Can you help me with an argument for these situation?
The tansig activation function essentially makes it possible than a neuron becomes inactive due to saturation. A linear neuron is always active. Therefore if one linear neuron has bad parameters, it will always affect the outcome of the classification. A higher number of neurons yield a higher probability of bad behavior in this scenario.

Replicator Neural Network for outlier detection, Step-wise function causing same prediction

In my project, one of my objectives is to find outliers in aeronautical engine data and chose to use the Replicator Neural Network to do so and read the following report on it (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.3366&rep=rep1&type=pdf) and am having a slight understanding issue with the step-wise function (page 4, figure 3) and the prediction values due to it.
The explanation of a replicator neural network is best described in the above report but as a background the replicator neural network I have built works by having the same number of outputs as inputs and having 3 hidden layers with the following activation functions:
Hidden layer 1 = tanh sigmoid S1(θ) = tanh,
Hidden layer 2 = step-wise, S2(θ) = 1/2 + 1/(2(k − 1)) {summation each variable j} tanh[a3(θ −j/N)]
Hidden Layer 3 = tanh sigmoid S1(θ) = tanh,
Output Layer 4 = normal sigmoid S3(θ) = 1/1+e^-θ
I have implemented the algorithm and it seems to be training (since the mean squared error decreases steadily during training). The only thing I don't understand is how the predictions are made when the middle layer with the step-wise activation function is applied since it causes the 3 middle nodes' activations to be become specific discrete values (e.g. my last activations on the 3 middle were 1.0, -1.0, 2.0 ) , this causes these values to be forward propagated and me getting very similar or exactly the same predictions every time.
The section in the report on page 3-4 best describes the algorithm but i have no idea what i have to do to fix this, i don't have much time either :(
Any help would be greatly appreciated.
Thank you
I'm facing the problem of implementing this algorithm and here is my insight into the problem that you might have had: The middle layer, by utilizing a step-wise function, is essentially performing clustering on the data. Each layer transforms the data into a discrete number which could be interpreted as a coordinate in a grid system. Imagine we use two neurons in the middle layer with step-wise values ranging from -2 to +2 in increments of 1. This way we define a 5x5 grid where each set of features will be placed. The more steps you allow, the more grids. The more grids, the more "clusters" you have.
This all sounds good and all. After all, we are compressing the data into a smaller (dimensional) representation which then is used to try to reconstruct into the original input.
This step-wise function, however, has a big problem on itself: back-propagation does not work (in theory) with step-wise functions. You can find more about this in this paper. In this last paper they suggest switching the step-wise function with a ramp-like function. That is, to have almost an infinite amount of clusters.
Your problem might be directly related to this. Try switching the step-wise function with a ramp-wise one and measure how the error changes throughout the learning phase.
By the way, do you have any of this code available anywhere for other researchers to use?