saving contents of df.show() as a string in pyspark - pyspark

from pyspark.sql import SparkSession
sc = SparkSession.builder.getOrCreate()
prsn = sc.read.format("csv").option("delimiter", ",").option("header", "true").option("inferSchema", "true").load("C:/Users/amit.suar/IdeaProjects/LearningPyspark/prsn.csv")
prsn.show()
+-------------------------+------------------------+---+-----------+-----------------------------+
|PERSON_MEDIA_CONSUMER_KEY|PERSON_MEDIA_CONSUMER_ID|AGE|GENDER_CODE|EDUCATION_LEVEL_CATEGORY_CODE|
+-------------------------+------------------------+---+-----------+-----------------------------+
| 101| 3285854| 15| 1| 1|
| 102| 2313090| 25| 1| 3|
| 103| 2295854| 33| 2| 6|
| 104| 2295854| 33| 2| 6|
| 105| 2471554| 26| 2| 4|
| 106| 2471554| 26| 2| 4|
+-------------------------+------------------------+---+-----------+-----------------------------+
i want to capture this output as a string in a variable..how can i achieve it?

There is internal/private function that return the same string as .show() prints:
# Return dataframe as a table of first n records (20 by default)
dataframe._jdf.showString(n, 20)

Related

create a new column to increment value when value resets to 1 in another column in pyspark

Logic and columnIn Pyspark DataFrame consider a column like [1,2,3,4,1,2,1,1,2,3,1,2,1,1,2]. Pyspark Column
create a new column to increment value when value resets to 1.
Expected output is[1,1,1,1,2,2,3,4,4,4,5,5,6,7,7]
i am bit new to pyspark, if anyone can help me it would be great for me.
written the logic as like below
def sequence(row_num):
results = [1, ]
flag = 1
for col in range(0, len(row_num)-1):
if row_num[col][0]>=row_num[col+1][0]:
flag+=1
results.append(flag)
return results
but not able to pass a column through udf. please help me in this
Your Dataframe:
df = spark.createDataFrame(
[
('1','a'),
('2','b'),
('3','c'),
('4','d'),
('1','e'),
('2','f'),
('1','g'),
('1','h'),
('2','i'),
('3','j'),
('1','k'),
('2','l'),
('1','m'),
('1','n'),
('2','o')
], ['group','label']
)
+-----+-----+
|group|label|
+-----+-----+
| 1| a|
| 2| b|
| 3| c|
| 4| d|
| 1| e|
| 2| f|
| 1| g|
| 1| h|
| 2| i|
| 3| j|
| 1| k|
| 2| l|
| 1| m|
| 1| n|
| 2| o|
+-----+-----+
You can create a flag and use a Window Function to calculate the cumulative sum. No need to use an UDF:
from pyspark.sql import Window as W
from pyspark.sql import functions as F
w = W.partitionBy().orderBy('label').rowsBetween(Window.unboundedPreceding, 0)
df\
.withColumn('Flag', F.when(F.col('group') == 1, 1).otherwise(0))\
.withColumn('Output', F.sum('Flag').over(w))\
.show()
+-----+-----+----+------+
|group|label|Flag|Output|
+-----+-----+----+------+
| 1| a| 1| 1|
| 2| b| 0| 1|
| 3| c| 0| 1|
| 4| d| 0| 1|
| 1| e| 1| 2|
| 2| f| 0| 2|
| 1| g| 1| 3|
| 1| h| 1| 4|
| 2| i| 0| 4|
| 3| j| 0| 4|
| 1| k| 1| 5|
| 2| l| 0| 5|
| 1| m| 1| 6|
| 1| n| 1| 7|
| 2| o| 0| 7|
+-----+-----+----+------+

How to combine dataframes with no common columns?

I have 2 data frames
val df1 = Seq(("1","2","3"),("4","5","6")).toDF("A","B","C")
df1.show
+---+---+---+
| A| B| C|
+---+---+---+
| 1| 2| 3|
| 1| 2| 3|
+---+---+---+
and
val df2 = Seq(("11","22","33"),("44","55","66")).toDF("D","E","F")
df2.show
+---+---+---+
| D| E| F|
+---+---+---+
| 11| 22| 33|
| 44| 55| 66|
+---+---+---+
I need to combine the ones above to get
val df3 = Seq(("1","2","3","","",""),("4","5","6","","",""),("","","","11","22","33"),("","","","44","55","66"))
.toDF("A","B","C","D","E","F")
df3.show
+---+---+---+---+---+---+
| A| B| C| D| E| F|
+---+---+---+---+---+---+
| 1| 2| 3| | | |
| 4| 5| 6| | | |
| | | | 11| 22| 33|
| | | | 44| 55| 66|
+---+---+---+---+---+---+
Right now I'm creating the missing columns for all dataframes manually to get to a common structure and am then using a union. This code is specific to the dataframes and is not scalable
Looking for a solution that will work with x dataframes with y columns each
You can manually create missing columns in the two data frames and then union them:
import org.apache.spark.sql.DataFrame
val allCols = df1.columns.toSet.union(df2.columns.toSet).toArray
val createMissingCols = (df: DataFrame, allCols: Array[String]) => allCols.foldLeft(df)(
(_df, _col) => if (_df.columns.contains(_col)) _df else _df.withColumn(_col, lit(""))
).select(allCols.head, allCols.tail: _*)
// select is needed to make sure the two data frames have the same order of columns
createMissingCols(df1, allCols).union(createMissingCols(df2, allCols)).show
+---+---+---+---+---+---+
| E| F| A| B| C| D|
+---+---+---+---+---+---+
| | | 1| 2| 3| |
| | | 4| 5| 6| |
| 22| 33| | | | 11|
| 55| 66| | | | 44|
+---+---+---+---+---+---+
A much simpler way of doing this is creating a full outer join and setting the join expression/condition to false:
val df1 = Seq(("1","2","3"),("4","5","6")).toDF("A","B","C")
val df2 = Seq(("11","22","33"),("44","55","66")).toDF("D","E","F")
val joined = df1.join(df2, lit(false), "full")
joined.show()
+----+----+----+----+----+----+
| A| B| C| D| E| F|
+----+----+----+----+----+----+
| 1| 2| 3|null|null|null|
| 4| 5| 6|null|null|null|
|null|null|null| 11| 22| 33|
|null|null|null| 44| 55| 66|
+----+----+----+----+----+----+
if you then want to actually set the null values to empty string you can just add:
val withEmptyString = joined.na.fill("")
withEmptyString.show()
+---+---+---+---+---+---+
| A| B| C| D| E| F|
+---+---+---+---+---+---+
| 1| 2| 3| | | |
| 4| 5| 6| | | |
| | | | 11| 22| 33|
| | | | 44| 55| 66|
+---+---+---+---+---+---+
so in summary df1.join(df2, lit(false), "full").na.fill("") should do the trick.

Spark Scala Window extend result until the end

I will expose my problem based on the initial dataframe and the one I want to achieve:
val df_997 = Seq [(Int, Int, Int, Int)]((1,1,7,10),(1,10,4,300),(1,3,14,50),(1,20,24,70),(1,30,12,90),(2,10,4,900),(2,25,30,40),(2,15,21,60),(2,5,10,80)).toDF("policyId","FECMVTO","aux","IND_DEF").orderBy(asc("policyId"), asc("FECMVTO"))
df_997.show
+--------+-------+---+-------+
|policyId|FECMVTO|aux|IND_DEF|
+--------+-------+---+-------+
| 1| 1| 7| 10|
| 1| 3| 14| 50|
| 1| 10| 4| 300|
| 1| 20| 24| 70|
| 1| 30| 12| 90|
| 2| 5| 10| 80|
| 2| 10| 4| 900|
| 2| 15| 21| 60|
| 2| 25| 30| 40|
+--------+-------+---+-------+
Imagine I have partitioned this DF by the column policyId and created the column row_num based on it to better see the Windows:
val win = Window.partitionBy("policyId").orderBy("FECMVTO")
val df_998 = df_997.withColumn("row_num",row_number().over(win))
df_998.show
+--------+-------+---+-------+-------+
|policyId|FECMVTO|aux|IND_DEF|row_num|
+--------+-------+---+-------+-------+
| 1| 1| 7| 10| 1|
| 1| 3| 14| 50| 2|
| 1| 10| 4| 300| 3|
| 1| 20| 24| 70| 4|
| 1| 30| 12| 90| 5|
| 2| 5| 10| 80| 1|
| 2| 10| 4| 900| 2|
| 2| 15| 21| 60| 3|
| 2| 25| 30| 40| 4|
+--------+-------+---+-------+-------+
Now, for each window, if the value of aux is 4, I want to set the value of IND_DEF column for that register to the column FEC_MVTO for this register on until the end of the window.
The resulting DF would be:
+--------+-------+---+-------+-------+
|policyId|FECMVTO|aux|IND_DEF|row_num|
+--------+-------+---+-------+-------+
| 1| 1| 7| 10| 1|
| 1| 3| 14| 50| 2|
| 1| 300| 4| 300| 3|
| 1| 300| 24| 70| 4|
| 1| 300| 12| 90| 5|
| 2| 5| 10| 80| 1|
| 2| 900| 4| 900| 2|
| 2| 900| 21| 60| 3|
| 2| 900| 30| 40| 4|
+--------+-------+---+-------+-------+
Thanks for your suggestions as I am very stuck in here...
Here's one approach: First left-join the DataFrame with its aux == 4 filtered version, followed by applying Window function first to backfill nulls with the wanted IND_DEF values per partition, and finally conditionally recreate column FECMVTO:
import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions._
import spark.implicits._
val df = Seq(
(1,1,7,10), (1,10,4,300), (1,3,14,50), (1,20,24,70), (1,30,12,90),
(2,10,4,900), (2,25,30,40), (2,15,21,60), (2,5,10,80)
).toDF("policyId","FECMVTO","aux","IND_DEF")
val win = Window.partitionBy("policyId").orderBy("FECMVTO").
rowsBetween(Window.unboundedPreceding, 0)
val df2 = df.
select($"policyId", $"aux", $"IND_DEF".as("IND_DEF2")).
where($"aux" === 4)
df.join(df2, Seq("policyId", "aux"), "left_outer").
withColumn("IND_DEF3", first($"IND_DEF2", ignoreNulls=true).over(win)).
withColumn("FECMVTO", coalesce($"IND_DEF3", $"FECMVTO")).
show
// +--------+---+-------+-------+--------+--------+
// |policyId|aux|FECMVTO|IND_DEF|IND_DEF2|IND_DEF3|
// +--------+---+-------+-------+--------+--------+
// | 1| 7| 1| 10| null| null|
// | 1| 14| 3| 50| null| null|
// | 1| 4| 300| 300| 300| 300|
// | 1| 24| 300| 70| null| 300|
// | 1| 12| 300| 90| null| 300|
// | 2| 10| 5| 80| null| null|
// | 2| 4| 900| 900| 900| 900|
// | 2| 21| 900| 60| null| 900|
// | 2| 30| 900| 40| null| 900|
// +--------+---+-------+-------+--------+--------+
Columns IND_DEF2, IND_DEF3 are kept only for illustration (and can certainly be dropped).
#I believe below can be solution for your issue
Considering input_df is your input dataframe
//Step#1 - Filter rows with IND_DEF = 4 from input_df
val only_FECMVTO_4_df1 = input_df.filter($"IND_DEF" === 4)
//Step#2 - Filling FECMVTO value from IND_DEF for the above result
val only_FECMVTO_4_df2 = only_FECMVTO_4_df1.withColumn("FECMVTO_NEW",$"IND_DEF").drop($"FECMVTO").withColumnRenamed("FECMVTO",$"FECMVTO_NEW")
//Step#3 - removing all the records from step#1 from input_df
val input_df_without_FECMVTO_4 = input_df.except(only_FECMVTO_4_df1)
//combining Step#2 output with output of Step#3
val final_df = input_df_without_FECMVTO_4.union(only_FECMVTO_4_df2)

Set literal value over Window if condition suited Spark Scala

I need to check a condition over a window:
- If the column IND_DEF is 20, then I want to change the value of the column premium for the window to which this register belongs to, and set it to 1.
My initial Dataframe looks like this:
+--------+----+-------+-----+-------+
|policyId|name|premium|state|IND_DEF|
+--------+----+-------+-----+-------+
| 1| BK| null| KT| 40|
| 1| AK| -31| null| 30|
| 1| VZ| null| IL| 20|
| 2| VK| 32| LI| 7|
| 2| CK| 25| YNZ| 10|
| 2| CK| 0| null| 5|
| 2| VK| 30| IL| 25|
+--------+----+-------+-----+-------+
And I want to achieve this:
+--------+----+-------+-----+-------+
|policyId|name|premium|state|IND_DEF|
+--------+----+-------+-----+-------+
| 1| BK| 1| KT| 40|
| 1| AK| 1| null| 30|
| 1| VZ| 1| IL| 20|
| 2| VK| 32| LI| 7|
| 2| CK| 25| YNZ| 10|
| 2| CK| 0| null| 5|
| 2| VK| 30| IL| 25|
+--------+----+-------+-----+-------+
I am trying the following code but does not work...
val df_946 = Seq [(Int, String, Integer, String, Int)]((1,"VZ",null,"IL",20),(1, "AK", -31,null,30),(1,"BK", null,"KT",40),(2,"CK",0,null,5),(2,"CK",25,"YNZ",10),(2,"VK",30,"IL",25),(2,"VK",32,"LI",7)).toDF("policyId", "name", "premium", "state","IND_DEF").orderBy("policyId")
val winSpec = Window.partitionBy("policyId").orderBy("policyId")
val df_947 = df_946.withColumn("premium",when(col("IND_DEF") === 20,lit(1).over(winSpec)).otherwise(col("premium")))
You can generate an array of IND_DEF values via collect_list for each window partition and recreate column premium based on the array_contains condition:
import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions._
import spark.implicits._
val df = Seq(
(1, None, 40),
(1, Some(-31), 30),
(1, None, 20),
(2, Some(32), 7),
(2, Some(30), 10)
).toDF("policyId", "premium", "IND_DEF")
val win = Window.partitionBy($"policyId")
df.
withColumn("indList", collect_list($"IND_DEF").over(win)).
withColumn("premium", when(array_contains($"indList", 20), 1).otherwise($"premium")).
drop($"indList").
show
// +--------+-------+-------+
// |policyId|premium|IND_DEF|
// +--------+-------+-------+
// | 1| 1| 40|
// | 1| 1| 30|
// | 1| 1| 20|
// | 2| 32| 7|
// | 2| 30| 10|
// +--------+-------+-------+

How do I replace null values of multiple columns with values from multiple different columns

I have a data frame like below
data = [
(1, None,7,10,11,19),
(1, 4,None,10,43,58),
(None, 4,7,67,88,91),
(1, None,7,78,96,32)
]
df = spark.createDataFrame(data, ["A_min", "B_min","C_min","A_max", "B_max","C_max"])
df.show()
and I would want the columns which show name as 'min' to be replaced by their equivalent max column.
Example null values of A_min column should be replaced by A_max column
It should be like the data frame below.
+-----+-----+-----+-----+-----+-----+
|A_min|B_min|C_min|A_max|B_max|C_max|
+-----+-----+-----+-----+-----+-----+
| 1| 11| 7| 10| 11| 19|
| 1| 4| 58| 10| 43| 58|
| 67| 4| 7| 67| 88| 91|
| 1| 96| 7| 78| 96| 32|
+-----+-----+-----+-----+-----+-----+
I have tried the code below by defining the columns but clearly this does not work. Really appreciate any help.
min_cols = ["A_min", "B_min","C_min"]
max_cols = ["A_max", "B_max","C_max"]
for i in min_cols
df = df.withColumn(i,when(f.col(i)=='',max_cols.otherwise(col(i))))
display(df)
Assuming you have the same number of max and min columns, you can use coalesce along with python's list comprehension to obtain your solution
from pyspark.sql.functions import coalesce
min_cols = ["A_min", "B_min","C_min"]
max_cols = ["A_max", "B_max","C_max"]
df.select(*[coalesce(df[val], df[max_cols[pos]]).alias(val) for pos, val in enumerate(min_cols)], *max_cols).show()
Output:
+-----+-----+-----+-----+-----+-----+
|A_min|B_min|C_min|A_max|B_max|C_max|
+-----+-----+-----+-----+-----+-----+
| 1| 11| 7| 10| 11| 19|
| 1| 4| 58| 10| 43| 58|
| 67| 4| 7| 67| 88| 91|
| 1| 96| 7| 78| 96| 32|
+-----+-----+-----+-----+-----+-----+