Kafka Stream - Recycle state every morning - apache-kafka

I have a KafkaStream application with multiple joins on KTable. Finally I am using Processor Api to form State Store to perform some sort of business logic. Earlier I had a purge job which was deleting Kafka log and KafkaStream's state dir every morning to process only today's data which was produced by my producers. Till this time everything was working as expected.
But deleting Kafka log directory is not good approach so I decided to make use of cleanup.policy to delete data from Kafka and deleting KafkaStream state dirs. I think this approach is creating problem in state stores where data is still being re-stored from changelog topics on App startup.
Is there a way to purge entire data from Kafka and all KafkaStream's state store along with changelog topics?
Appreciate your help.

Related

Kafka consumer is processing all messages at startup

I am new to Kafka, and am developing a personal project with a few services and the communication between them is made through Kafka and I am using Confluent for housing Kafka remotely.
All works fine, but when I startup a server it will try to process all the old messages in the topics that were generated as I was testing the system.
I would like to avoid this because it is time consuming and those messages were already processed, when the server was up the last time. Is there any way to prevent this in the development environment?
Am I even using Kafka correctly? Are there good practises that I missed?
By "server", I assume you mean consumer. The broker server doesn't process data, only stores it.
If you have auto.offset.reset=earliest + enable.auto.commit=false + are not committing the records in your code (or are overall using a new group.id each time), this is the expected behavior since your group.id is not tracking already consumed data.
Since you're now in a situation where you have processed data, but no stored offsets, first set a static group id, then your options include
re-process all the data again, accepting the duplicates, perhaps adding some conditional filter in your consumer code to skip records
skip all processed and un-processed data and only start consuming brand-new records after the consumer starts, by either setting a new group.id + auto.offset.reset=latest, or use consumer.seekToEnd() / the kafka-consumer-groups CLI tool ; downside of setting auto.offset.reset=latest is that you might run into a situation where the consumer group has been idle too long, and the group expires, causing you to go back to the end of the topic, even though there may still be un-processed data
manually find the offsets for all the partitions for the last processed data and consumer.seek() to those offsets

Does rebuilding state stores in Kafka Streams propagate duplicate records to downstream topics?

I'm currently using Kafka Streams for a stateful application. The state is not stored in a Kafka state store though, but rather just in memory for the moment being. This means whenever I restart the application, all state is lost and it has to be rebuilt by processing all records from the start.
After doing some research on Kafka state stores, this seems to be exactly the solution I'm looking for to persist state between application restarts (either in memory or on disk). However, I find the resources online lack some pretty important details, so I still have a couple of questions on how this would work exactly:
If the stream is set to start from offset latest, will the state still be (re)calculated from all the previous records?
If previously already processed records need to be reprocessed in order to rebuild the state, will this propagate records through the rest of the Streams topology (e.g. InputTopic -> stateful processor -> OutputTopic, will this result in duplicated records in the OutputTopic because of rebuilding state)?
State stores use their own changelog topics, and kafka-streams state stores take on responsibility for loading from them. If your state stores are uninitialised, your kafka-streams app will rehydrate its local state store from the changelog topic using EARLIEST, since it has to read every record.
This means the startup sequence for a brand new instance is roughly:
Observe there is no local state-store cache
Load the local state store by consumeing from the changelog topic for the statestore (the state-store's topic name is <state-store-name>-changelog)
Read each record and update a local rocksDB instance accordingly
Do not emit anything, since this is an application-service, not your actual topology
Read your consumer-groups offsets using EARLIEST or LATEST according to how you configured the topology. Not this is only a concern if your consumer group doesn't have any offsets yet
Process stuff, emitting records according to the topology
Whether you set your actual topology's auto.offset.reset to LATEST or EARLIEST is up to you. In the event they are lost, or you create a new group, its a balance between potentially skipping records (LATEST) vs handling reprocessing of old records & deduplication (EARLIEST),
Long story short: state-restoration is different from processing, and handled by kafka-streams its self.
If the stream is set to start from offset latest, will the state still be (re)calculated from all the previous records?
If you are re-launching the same application (e.g. after having stopped it before), then state will not be recalculated by reprocessing the original input data. Instead, the state will be restored from its "backup" (every state store or KTable is durably stored in a Kafka topic, the so-called "changelog topic" of that table/state store for such purposes) so that its data is exactly what it was when the application was stopped. This behavior enables you to seamlessly stop+restart your applications without skipping over records that arrived between "stop" and "restart".
But there is a different caveat that you need to be aware of: The configuration to set the offset start point (latest or earliest) is only used when you run your Kafka Streams application for the first time. Afterwards, whenever you stop+restart your application, it will always continue where it previously stopped. That's because, if the app has run at least once, it has stored its consumer offset information in Kafka, which allows it to know from where to automatically resume operations once it is being restarted.
If you need the different behavior of always (re)starting from e.g. the latest offsets (thus potentially skipping records that arrived in between when you stopped the application and when you restarted it), you must reset your Kafka Streams application. One of the steps the reset tool performs is removing the application's consumer offset information from Kafka, which makes the application think that it was never started before, so to speak.
If previously already processed records need to be reprocessed in order to rebuild the state, will this propagate records through the rest of the Streams topology (e.g. InputTopic -> stateful processor -> OutputTopic, will this result in duplicated records in the OutputTopic because of rebuilding state)?
This reprocessing will not happen by default as explained above. State will be automatically reconstructed to its prior state (pun intended) at the point when the application was stopped.
Reprocessing would only happen if you manually reset your application (see above) and e.g. configure the application to re-read historical data (like setting auto.offset.reset to earliest after you did the reset).

Using kafka for CQRS

Been reading a lot about kafka's use as an event store and a potential good candidate for CQRS.
I was wondering, since messages in kafka have a limited retention time, how will events be replayed after the messages were deleted from the disk where kafka retains messages?
Logically, when these messages are stored externally from kafka (after reading messages from kafka topics) in a db (sql/nosql), that would make more sense from an event store standpoint than kafka.
In lieu of above, given my understanding is correct, what is the real use case of kafka being used in CQRS even though the actual intent of kafka was just a high throughput messaging system?
You can use Kafka of event store and CQRS. You can use Kafka Stream to process all events generated by commands and store a snapshot of your entities in a changelog topic and store the changelog topic in a NOSQL one or more databases that meets your requirement. Also, all event can be store in a database(PostgresSql). What's important to know is that Kafka can be used as a store(its store files in high available way) or as a message query.
Retention time: You can set the retention time as long as you want or even keep messages forever in the topic.
Using Kafka as the data store: Sure, you can. There is a feature named Log Compaction. Let say the following scenario:
Insert product with ID=10, Name=Apple, Price=10
Insert product with ID=20, Name=Orange, Price=20
Update product with ID=10, Price becomes 30
When one topic is turned on the log compaction, a background job will periodically clean up messages on that topic. This job will check if any message has the same key then only keeps the final. With the above scenario, messages which are written to Kafka will the following format:
Message 1: Key=1, Name=Apple, Price=10
Message 2: Key=2, Name=Orange, Price=20
Message 3: Key=1, Name=Apple, Price=30 (Every update now includes all fields so it can self-contained)
After the log compaction, the topic will become:
Message 1: Key=2, Name=Orange, Price=20
Message 2: Key=1, Name=Apple, Price=30 (Keep the lastest record with the ID=1)
In reality, Kafka uses log compaction feature to make Kafka as the persistent data storage.

Get latest values from a topic on consumer start, then continue normally

We have a Kafka producer that produces keyed messages in a very high frequency to topics whose retention time = 10 hours. These messages are real-time updates and the used key is the ID of the element whose value has changed. So the topic is acting as a changelog and will have many duplicate keys.
Now, what we're trying to achieve is that when a Kafka consumer launches, regardless of the last known state (new consumer, crashed, restart, etc..), it will somehow construct a table with the latest values of all the keys in a topic, and then keeps listening for new updates as normal, keeping the minimum load on Kafka server and letting the consumer do most of the job. We tried many ways and none of them seems the best.
What we tried:
1 changelog topic + 1 compact topic:
The producer sends the same message to both topics wrapped in a transaction to assure successful send.
Consumer launches and requests the latest offset of the changelog topic.
Consumes the compacted topic from beginning to construct the table.
Continues consuming the changelog since the requested offset.
Cons:
Having duplicates in compacted topic is a very high possibility even with setting the log compaction frequency the highest possible.
x2 number of topics on Kakfa server.
KSQL:
With KSQL we either have to rewrite a KTable as a topic so that consumer can see it (Extra topics), or we will need consumers to execute KSQL SELECT using to KSQL Rest Server and query the table (Not as fast and performant as Kafka APIs).
Kafka Consumer API:
Consumer starts and consumes the topic from beginning. This worked perfectly, but the consumer has to consume the 10 hours change log to construct the last values table.
Kafka Streams:
By using KTables as following:
KTable<Integer, MarketData> tableFromTopic = streamsBuilder.table("topic_name", Consumed.with(Serdes.Integer(), customSerde));
KTable<Integer, MarketData> filteredTable = tableFromTopic.filter((key, value) -> keys.contains(value.getRiskFactorId()));
Kafka Streams will create 1 topic on Kafka server per KTable (named {consumer_app_id}-{topic_name}-STATE-STORE-0000000000-changelog), which will result in a huge number of topics since we a big number of consumers.
From what we have tried, it looks like we need to either increase the server load, or the consumer launch time. Isn't there a "perfect" way to achieve what we're trying to do?
Thanks in advance.
By using KTables, Kafka Streams will create 1 topic on Kafka server per KTable, which will result in a huge number of topics since we a big number of consumers.
If you are just reading an existing topic into a KTable (via StreamsBuilder#table()), then no extra topics are being created by Kafka Streams. Same for KSQL.
It would help if you could clarify what exactly you want to do with the KTable(s). Apparently you are doing something that does result in additional topics being created?
1 changelog topic + 1 compact topic:
Why were you thinking about having two separate topics? Normally, changelog topics should always be compacted. And given your use case description, I don't see a reason why it should not be:
Now, what we're trying to achieve is that when a Kafka consumer launches, regardless of the last known state (new consumer, crashed, restart, etc..), it will somehow construct a table with the latest values of all the keys in a topic, and then keeps listening for new updates as normal [...]
Hence compaction would be very useful for your use case. It would also prevent this problem you described:
Consumer starts and consumes the topic from beginning. This worked perfectly, but the consumer has to consume the 10 hours change log to construct the last values table.
Note that, to reconstruct the latest table values, all three of Kafka Streams, KSQL, and the Kafka Consumer must read the table's underlying topic completely (from beginning to end). If that topic is NOT compacted, this might indeed take a long time depending on the data volume, topic retention settings, etc.
From what we have tried, it looks like we need to either increase the server load, or the consumer launch time. Isn't there a "perfect" way to achieve what we're trying to do?
Without knowing more about your use case, particularly what you want to do with the KTable(s) once they are populated, my answer would be:
Make sure the "changelog topic" is also compacted.
Try KSQL first. If this doesn't satisfy your needs, try Kafka Streams. If this doesn't satisfy your needs, try the Kafka Consumer.
For example, I wouldn't use the Kafka Consumer if it is supposed to do any stateful processing with the "table" data, because the Kafka Consumer lacks built-in functionality for fault-tolerant stateful processing.
Consumer starts and consumes the topic from beginning. This worked
perfectly, but the consumer has to consume the 10 hours change log to
construct the last values table.
During the first time your application starts up, what you said is correct.
To avoid this during every restart, store the key-value data in a file.
For example, you might want to use a persistent map (like MapDB).
Since you give the consumer group.id and you commit the offset either periodically or after each record is stored in the map, the next time your application restarts it will read it from the last comitted offset for that group.id.
So the problem of taking a lot of time occurs only initially (during first time). So long as you have the file, you don't need to consume from beginning.
In case, if the file is not there or is deleted, just seekToBeginning in the KafkaConsumer and build it again.
Somewhere, you need to store this key-values for retrieval and why cannot it be a persistent store?
In case if you want to use Kafka streams for whatever reason, then an alternative (not as simple as the above) is to use a persistent backed store.
For example, a persistent global store.
streamsBuilder.addGlobalStore(Stores.keyValueStoreBuilder(Stores.persistentKeyValueStore(topic), keySerde, valueSerde), topic, Consumed.with(keySerde, valueSerde), this::updateValue);
P.S: There will be a file called .checkpoint in the directory which stores the offsets. In case if the topic is deleted in the middle you get OffsetOutOfRangeException. You may want to avoid this, perhaps by using UncaughtExceptionHandler
Refer to https://stackoverflow.com/a/57301986/2534090 for more.
Finally,
It is better to use Consumer with persistent file rather than Streams for this, because of simplicity it offers.

Is there any way to ensure that duplicate records are not inserted in kafka topic?

I have been trying to implement a queuing mechanism using kafka where I want to ensure that duplicate records are not inserted into topic created.
I found that iteration is possible in consumer. Is there any way by which we can do this in producer thread as well?
This is known as exactly-once processing.
You might be interested in the first part of Kafka FAQ that describes some approaches on how to avoid duplication on data production (i.e. on producer side):
Exactly once semantics has two parts: avoiding duplication during data
production and avoiding duplicates during data consumption.
There are two approaches to getting exactly once semantics during data
production:
Use a single-writer per partition and every time you get a network
error check the last message in that partition to see if your last
write succeeded
Include a primary key (UUID or something) in the
message and deduplicate on the consumer.
If you do one of these things, the log that Kafka hosts will be
duplicate-free. However, reading without duplicates depends on some
co-operation from the consumer too. If the consumer is periodically
checkpointing its position then if it fails and restarts it will
restart from the checkpointed position. Thus if the data output and
the checkpoint are not written atomically it will be possible to get
duplicates here as well. This problem is particular to your storage
system. For example, if you are using a database you could commit
these together in a transaction. The HDFS loader Camus that LinkedIn
wrote does something like this for Hadoop loads. The other alternative
that doesn't require a transaction is to store the offset with the
data loaded and deduplicate using the topic/partition/offset
combination.
I think there are two improvements that would make this a lot easier:
Producer idempotence could be done automatically and much more cheaply
by optionally integrating support for this on the server.
The existing
high-level consumer doesn't expose a lot of the more fine grained
control of offsets (e.g. to reset your position). We will be working
on that soon