Scala Option.fold Behaves differently in and out of function - scala

Take the simple function:
def makeUpper(input: Option[String]): String =
input.fold("b"){ _.toUpperCase }
makeUpper(Some("a")) // A
makeUpper(None) // b
This is as expected.
Now, the same code, but outside the function:
Some("a").fold("b"){ _.toUpperCase } // A
None.fold("b"){ _.toUpperCase } // error: value toUpperCase is not a member of Nothing
Note:
Option.empty[String].fold("b"){ _.toUpperCase } // b
Questions:
Why the different behavior? Why the error outside the function?
Is the function casting the input None to a "definitive" Option.empty[String]?
What is the correct way to handle returns from function that return Option (Some or None)... Do we always have to process the return value inside another function to avoid the above issue?
What am I missing?

Scala compiler can infer types.
Since you have defined the function parameter input as Option[String], even if you pass None, the compiler knows that it is an Option[String] and appropritately types it.
Which is kind of doing this,
val none: Option[String] = None
none.fold("b"){ _.toUpperCase }
Or this,
(None: Option[String]).fold("b"){ _.toUpperCase }
When directly using None without any extra information, the compiler still tries to infer best guess useing only available information which is None extends Option[Nothing] and hence treats it as Option[Nothing]. Which is equivalent to,
val none: Option[Nothing] = None
none.fold("b"){ _.toUpperCase }
or this,
(None: Option[Nothing]).fold("b"){ _.toUpperCase }
Notice that there is no indication of any relation to String in this case.
As long as you help the compiler by telling your intended type even at one place. It will be able to infer intended types for other relatable places.
scala> val noneIntOpt = noneStringOpt
// val noneIntOpt: Option[String] = None
scala> val noneIntOpt = noneStringOpt.map(_.length)
// val noneIntOpt: Option[Int] = None

None is defined as:
case object None extends Option[Nothing]
So when you call a method on the "contents" of None you are calling a method on a value of type Nothing. This type does not have a method toUpperCase so you get an error.
However Nothing is compatible with every type, and Option is covariant with its type parameter, so Option[Nothing] is compatible with Option[String]. This is why None can be passed to your makeUpper method. Once the type of the contents is known to be String the toUpperCase method can be called on it.

Related

Implicit conversions weirdness

I am trying to understand why exactly an implicit conversion is working in one case, but not in the other.
Here is an example:
case class Wrapper[T](wrapped: T)
trait Wrapping { implicit def wrapIt[T](x: Option[T]) = x.map(Wrapper(_))
class NotWorking extends Wrapping { def foo: Option[Wrapper[String]] = Some("foo") }
class Working extends Wrapping {
def foo: Option[Wrapper[String]] = {
val why = Some("foo")
why
}
}
Basically, I have an implicit conversion from Option[T] to Option[Wrapper[T]], and am trying to define a function, that returns an optional string, that gets implicitly wrapped.
The question is why, when I try to return Option[String] directly (NotWorking above), I get an error (found : String("foo") required: Wrapper[String]), that goes away if I assign the result to a val before returning it.
What gives?
I don't know if this is intended or would be considered a bug, but here is what I think is happening.
In def foo: Option[Wrapper[String]] = Some("foo") the compiler will set the expected type of the argument provided to Some( ) as Wrapper[String]. Then it sees that you provided a String which it is not what is expected, so it looks for an implicit conversion String => Wrapper[String], can't find one, and fails.
Why does it need that expected type stuff, and doesn't just type Some("foo") as Some[String] and afterwards try to find a conversion?
Because scalac wants to be able to typecheck the following code:
case class Invariant[T](t: T)
val a: Invariant[Any] = Invariant("s")
In order for this code to work, the compiler can't just type Invariant("s") as Invariant[String] because then compilation will fail as Invariant[String] is not a subtype of Invariant[Any]. The compiler needs to set the expected type of "s" to Any so that it can see that "s" is an instance of Any before it's too late.
In order for both this code and your code to work out correctly, I think the compiler would need some kind of backtracking logic which it doesn't seem to have, perhaps for good reasons.
The reason that your Working code does work, is that this kind of type inference does not span multiple lines. Analogously val a: Invariant[Any] = {val why = Invariant("s"); why} does not compile.

Scala - how to create a single implicit that can be used for a type constructor

I'm trying to write a method which uses the isEmpty method on types String, Option and List. These classes don't share a common base trait with that method, so I've tried to pass an implicit EmptyChecker in with them:
trait EmptyChecker[Field] {
def isEmpty(data: Field): Boolean
}
implicit val StringEmptyChecker: EmptyChecker[String] = new EmptyChecker[String] {
def isEmpty(string: String): Boolean = string.isEmpty
}
def printEmptiness[Field](field: Field)(implicit emptyChecker: EmptyChecker[Field]): Unit = {
if (emptyChecker.isEmpty(field))
println("Empty")
else
println("Not empty")
}
printEmptiness("abc") // Works fine
The String empty checker works fine, but I've hit problems with making empty checkers for type constructors like Option and List.
For example, Option doesn't work:
implicit val OptionChecker: EmptyChecker[Option[_]] = new EmptyChecker[Option[_]] {
def isEmpty(option: Option[_]): Boolean = option.isEmpty
}
// Both fail compilation: "could not find implicit value for parameter emptyChecker: EmptyChecker[Some[Int]]
printEmptiness(Some(3))
printEmptiness[Option[Int]](Some(3))
If I use a specific Option[Int] checker, it works a little better, but is a bit ugly:
implicit val OptionIntChecker: EmptyChecker[Option[Int]] = new EmptyChecker[Option[Int]] {
def isEmpty(optionInt: Option[Int]): Boolean = optionInt.isEmpty
}
// Fails like above:
printEmptiness(Some(3))
// Passes compilation:
printEmptiness[Option[Int]](Some(3))
So my question is: is it possible to make a single EmptyChecker for each Option and List type and have them work with my method without needing to explicitly declare the type whenever I call it? I'm trying to get a type safe duck typing effect.
I'm using scala 2.11.6.
Thanks in advance!
The source of your problem is that the type of Some(1) is Some[Int], not Option[Int]. There are a couple of ways around this; you can explicitly upcast the expression with a type ascription: printEmptiness(Some(3): Option[Int]). Alternatively, you can define a helper method to do this for you automatically, and if you're using Scalaz, there's one of these provided:
import scalaz.syntax.std.option._
printEmptiness(3.some)
Furthermore if you do use Scalaz, you may find looking at the PlusEmpty/ApplicativePlus/MonadPlus type classes useful.

Reify a ValDef from compile to runtime

I want to reify a ValDef into runtime, but i does not work directly. If i encapsulate the ValDef into a Block, everything works perfectly, like in the following example:
case class Container(expr: Expr[Any])
def lift(expr: Any): Container = macro reifyValDef
def reifyValDef(c: Context)(expr: c.Expr[Any]): c.Expr[Container] = {
import c.universe._
expr.tree match {
case Block(List(v: ValDef), _) =>
val asBlock = q"{$v}"
val toRuntime = q"scala.reflect.runtime.universe.reify($asBlock)"
c.Expr[Container](q"Container($toRuntime)")
}
}
lift {
val x: Int = 10
}
If i would use v directly, instead of wrapping it into a block, I get the error:
Error:(10, 11) type mismatch;
found :
required: Any
Note that extends Any, not AnyRef.
Such types can participate in value classes, but instances
cannot appear in singleton types or in reference comparisons.
val x: Int = 10
^
Is it just not working directly with ValDefs or is something wrong with my code?
That's one of the known issues in the reflection API. Definitions are technically not expressions, so you can't e.g. pass them directly as arguments to functions. Wrapping the definition in a block is a correct way of addressing the block.
The error message is of course confusing, but it does make some twisted sense. To signify the fact that a definition by itself doesn't have a type, the tpe field of the corresponding Tree is set to NoType. Then the type of the argument of a macro is checked against Any and the check fails (because NoType is a special type, which isn't compatible with anything), so a standard error message is printed. The awkward printout is an artifact of how the prettyprinter behaves in this weird situation.

Is there a way to have this done implicitly?

Is there any way to have this implicit method called on x before it matches to meet the type requirements of the match?
If I call it directly it works as expected, but I would like to know if it's possible for the call to be inferred.
object ImplicitTest extends App {
implicit def denull[T<:Any](mightBeNull:T):Option[T] = {
if (mightBeNull == null) None
else Some(canBeNull)
}
var x:String = null
x match { //works if i do "denull(x) match {"
case Some(str:String) =>
println(str)
case None => None
}
}
Instead of your denull method you should use Option.apply. It does the same thing. Possible null values should always be handled explicitly! Implicit conversion is dangerous and can be confusing for other people who have to work with your code. Do it like this:
Option(x) match {}
or in most cases even better:
Option(x).fold { ... } { ... }
You can wrap this with method which uses implicit convertion if you want:
def print[A](opt: Option[A]) = opt.foreach(println)
When you call this method on variable with null value, Scala compiler resolves your implicit convertion method denull, and if it isn't None, will print it.
But you can simply do this without denull method:
var str: String = null
Option(str).foreach(println)
Scala won't resolve implicit conversion in pattern matching, because has no idea that it needs to be converted to some other type. Such way of conversion is a mechanism against type errors, when compiler can do "the last try" and use some value with type A in place where type B needed. In pattern matching you just match against type or other things

Understanding implicit in Scala

I was making my way through the Scala playframework tutorial and I came across this snippet of code which had me puzzled:
def newTask = Action { implicit request =>
taskForm.bindFromRequest.fold(
errors => BadRequest(views.html.index(Task.all(), errors)),
label => {
Task.create(label)
Redirect(routes.Application.tasks())
}
)
}
So I decided to investigate and came across this post.
I still don't get it.
What is the difference between this:
implicit def double2Int(d : Double) : Int = d.toInt
and
def double2IntNonImplicit(d : Double) : Int = d.toInt
other than the obvious fact they have different method names.
When should I use implicit and why?
I'll explain the main use cases of implicits below, but for more detail see the relevant chapter of Programming in Scala.
Implicit parameters
The final parameter list on a method can be marked implicit, which means the values will be taken from the context in which they are called. If there is no implicit value of the right type in scope, it will not compile. Since the implicit value must resolve to a single value and to avoid clashes, it's a good idea to make the type specific to its purpose, e.g. don't require your methods to find an implicit Int!
example:
// probably in a library
class Prefixer(val prefix: String)
def addPrefix(s: String)(implicit p: Prefixer) = p.prefix + s
// then probably in your application
implicit val myImplicitPrefixer = new Prefixer("***")
addPrefix("abc") // returns "***abc"
Implicit conversions
When the compiler finds an expression of the wrong type for the context, it will look for an implicit Function value of a type that will allow it to typecheck. So if an A is required and it finds a B, it will look for an implicit value of type B => A in scope (it also checks some other places like in the B and A companion objects, if they exist). Since defs can be "eta-expanded" into Function objects, an implicit def xyz(arg: B): A will do as well.
So the difference between your methods is that the one marked implicit will be inserted for you by the compiler when a Double is found but an Int is required.
implicit def doubleToInt(d: Double) = d.toInt
val x: Int = 42.0
will work the same as
def doubleToInt(d: Double) = d.toInt
val x: Int = doubleToInt(42.0)
In the second we've inserted the conversion manually; in the first the compiler did the same automatically. The conversion is required because of the type annotation on the left hand side.
Regarding your first snippet from Play:
Actions are explained on this page from the Play documentation (see also API docs). You are using
apply(block: (Request[AnyContent]) ⇒ Result): Action[AnyContent]
on the Action object (which is the companion to the trait of the same name).
So we need to supply a Function as the argument, which can be written as a literal in the form
request => ...
In a function literal, the part before the => is a value declaration, and can be marked implicit if you want, just like in any other val declaration. Here, request doesn't have to be marked implicit for this to type check, but by doing so it will be available as an implicit value for any methods that might need it within the function (and of course, it can be used explicitly as well). In this particular case, this has been done because the bindFromRequest method on the Form class requires an implicit Request argument.
WARNING: contains sarcasm judiciously! YMMV...
Luigi's answer is complete and correct. This one is only to extend it a bit with an example of how you can gloriously overuse implicits, as it happens quite often in Scala projects. Actually so often, you can probably even find it in one of the "Best Practice" guides.
object HelloWorld {
case class Text(content: String)
case class Prefix(text: String)
implicit def String2Text(content: String)(implicit prefix: Prefix) = {
Text(prefix.text + " " + content)
}
def printText(text: Text): Unit = {
println(text.content)
}
def main(args: Array[String]): Unit = {
printText("World!")
}
// Best to hide this line somewhere below a pile of completely unrelated code.
// Better yet, import its package from another distant place.
implicit val prefixLOL = Prefix("Hello")
}
In scala implicit works as:
Converter
Parameter value injector
Extension method
There are some uses of Implicit
Implicitly type conversion : It converts the error producing assignment into intended type
val x :String = "1"
val y:Int = x
String is not the sub type of Int , so error happens in line 2. To resolve the error the compiler will look for such a method in the scope which has implicit keyword and takes a String as argument and returns an Int .
so
implicit def z(a:String):Int = 2
val x :String = "1"
val y:Int = x // compiler will use z here like val y:Int=z(x)
println(y) // result 2 & no error!
Implicitly receiver conversion: We generally by receiver call object's properties, eg. methods or variables . So to call any property by a receiver the property must be the member of that receiver's class/object.
class Mahadi{
val haveCar:String ="BMW"
}
class Johnny{
val haveTv:String = "Sony"
}
val mahadi = new Mahadi
mahadi.haveTv // Error happening
Here mahadi.haveTv will produce an error. Because scala compiler will first look for the haveTv property to mahadi receiver. It will not find. Second it will look for a method in scope having implicit keyword which take Mahadi object as argument and returns Johnny object. But it does not have here. So it will create error. But the following is okay.
class Mahadi{
val haveCar:String ="BMW"
}
class Johnny{
val haveTv:String = "Sony"
}
val mahadi = new Mahadi
implicit def z(a:Mahadi):Johnny = new Johnny
mahadi.haveTv // compiler will use z here like new Johnny().haveTv
println(mahadi.haveTv)// result Sony & no error
Implicitly parameter injection: If we call a method and do not pass its parameter value, it will cause an error. The scala compiler works like this - first will try to pass value, but it will get no direct value for the parameter.
def x(a:Int)= a
x // ERROR happening
Second if the parameter has any implicit keyword it will look for any val in the scope which have the same type of value. If not get it will cause error.
def x(implicit a:Int)= a
x // error happening here
To slove this problem compiler will look for a implicit val having the type of Int because the parameter a has implicit keyword.
def x(implicit a:Int)=a
implicit val z:Int =10
x // compiler will use implicit like this x(z)
println(x) // will result 10 & no error.
Another example:
def l(implicit b:Int)
def x(implicit a:Int)= l(a)
we can also write it like-
def x(implicit a:Int)= l
Because l has a implicit parameter and in scope of method x's body, there is an implicit local variable(parameters are local variables) a which is the parameter of x, so in the body of x method the method-signature l's implicit argument value is filed by the x method's local implicit variable(parameter) a implicitly.
So
def x(implicit a:Int)= l
will be in compiler like this
def x(implicit a:Int)= l(a)
Another example:
def c(implicit k:Int):String = k.toString
def x(a:Int => String):String =a
x{
x => c
}
it will cause error, because c in x{x=>c} needs explicitly-value-passing in argument or implicit val in scope.
So we can make the function literal's parameter explicitly implicit when we call the method x
x{
implicit x => c // the compiler will set the parameter of c like this c(x)
}
This has been used in action method of Play-Framework
in view folder of app the template is declared like
#()(implicit requestHreader:RequestHeader)
in controller action is like
def index = Action{
implicit request =>
Ok(views.html.formpage())
}
if you do not mention request parameter as implicit explicitly then you must have been written-
def index = Action{
request =>
Ok(views.html.formpage()(request))
}
Extension Method
Think, we want to add new method with Integer object. The name of the method will be meterToCm,
> 1 .meterToCm
res0 100
to do this we need to create an implicit class within a object/class/trait . This class can not be a case class.
object Extensions{
implicit class MeterToCm(meter:Int){
def meterToCm={
meter*100
}
}
}
Note the implicit class will only take one constructor parameter.
Now import the implicit class in the scope you are wanting to use
import Extensions._
2.meterToCm // result 200
Why and when you should mark the request parameter as implicit:
Some methods that you will make use of in the body of your action have an implicit parameter list like, for example, Form.scala defines a method:
def bindFromRequest()(implicit request: play.api.mvc.Request[_]): Form[T] = { ... }
You don't necessarily notice this as you would just call myForm.bindFromRequest() You don't have to provide the implicit arguments explicitly. No, you leave the compiler to look for any valid candidate object to pass in every time it comes across a method call that requires an instance of the request. Since you do have a request available, all you need to do is to mark it as implicit.
You explicitly mark it as available for implicit use.
You hint the compiler that it's "OK" to use the request object sent in by the Play framework (that we gave the name "request" but could have used just "r" or "req") wherever required, "on the sly".
myForm.bindFromRequest()
see it? it's not there, but it is there!
It just happens without your having to slot it in manually in every place it's needed (but you can pass it explicitly, if you so wish, no matter if it's marked implicit or not):
myForm.bindFromRequest()(request)
Without marking it as implicit, you would have to do the above. Marking it as implicit you don't have to.
When should you mark the request as implicit? You only really need to if you are making use of methods that declare an implicit parameter list expecting an instance of the Request. But to keep it simple, you could just get into the habit of marking the request implicit always. That way you can just write beautiful terse code.
Also, in the above case there should be only one implicit function whose type is double => Int. Otherwise, the compiler gets confused and won't compile properly.
//this won't compile
implicit def doubleToInt(d: Double) = d.toInt
implicit def doubleToIntSecond(d: Double) = d.toInt
val x: Int = 42.0
I had the exact same question as you had and I think I should share how I started to understand it by a few really simple examples (note that it only covers the common use cases).
There are two common use cases in Scala using implicit.
Using it on a variable
Using it on a function
Examples are as follows
Using it on a variable. As you can see, if the implicit keyword is used in the last parameter list, then the closest variable will be used.
// Here I define a class and initiated an instance of this class
case class Person(val name: String)
val charles: Person = Person("Charles")
// Here I define a function
def greeting(words: String)(implicit person: Person) = person match {
case Person(name: String) if name != "" => s"$name, $words"
case _ => "$words"
}
greeting("Good morning") // Charles, Good moring
val charles: Person = Person("")
greeting("Good morning") // Good moring
Using it on a function. As you can see, if the implicit is used on the function, then the closest type conversion method will be used.
val num = 10 // num: Int (of course)
// Here I define a implicit function
implicit def intToString(num: Int) = s"$num -- I am a String now!"
val num = 10 // num: Int (of course). Nothing happens yet.. Compiler believes you want 10 to be an Int
// Util...
val num: String = 10 // Compiler trust you first, and it thinks you have `implicitly` told it that you had a way to covert the type from Int to String, which the function `intToString` can do!
// So num is now actually "10 -- I am a String now!"
// console will print this -> val num: String = 10 -- I am a String now!
Hope this can help.
A very basic example of Implicits in scala.
Implicit parameters:
val value = 10
implicit val multiplier = 3
def multiply(implicit by: Int) = value * by
val result = multiply // implicit parameter wiil be passed here
println(result) // It will print 30 as a result
Note: Here multiplier will be implicitly passed into the function multiply. Missing parameters to the function call are looked up by type in the current scope meaning that code will not compile if there is no implicit variable of type Int in the scope.
Implicit conversions:
implicit def convert(a: Double): Int = a.toInt
val res = multiply(2.0) // Type conversions with implicit functions
println(res) // It will print 20 as a result
Note: When we call multiply function passing a double value, the compiler will try to find the conversion implicit function in the current scope, which converts Int to Double (As function multiply accept Int parameter). If there is no implicit convert function then the compiler will not compile the code.